Qinglin Du , Xiaoyu Zhang , Feng Wang , Wenqiang Liu
{"title":"Oxidative dehydrogenation of ethane to ethylene with CO2 via Mg-Al spinel catalysts: Insight into dehydrogenation mechanism","authors":"Qinglin Du , Xiaoyu Zhang , Feng Wang , Wenqiang Liu","doi":"10.1016/j.ccst.2024.100327","DOIUrl":null,"url":null,"abstract":"<div><div>This study compares the CO<sub>2</sub>-assisted oxidative dehydrogenation of ethane (CO<sub>2</sub>-ODHE) performance of Mg-Al spinel catalysts doped with various metals (Cr, Fe, Co, Ga) that possess dehydrogenation activity. Both experimental and theoretical analyses were conducted to explore the reaction mechanism of CO<sub>2</sub>-ODHE on the spinel catalyst. The findings indicate that the MgFeAlO<sub>4</sub> spinel catalyst exhibited CO<sub>2</sub>-ODHE activity at 600 °C, achieving a CO<sub>2</sub> conversion rate of 20.3 %, an ethane conversion rate of 27.9 %, and an ethylene selectivity of 87.9 %. Mechanistic studies revealed that CO<sub>2</sub> activation primarily occurs through the reverse water-gas shift reaction, and density functional theory calculations identified the doped metal ions as the principal active sites for ethane activation. These results suggest that CO<sub>2</sub>-ODHE on the spinel surface follows a mechanism of catalytic dehydrogenation coupled with the reverse water-gas shift reaction. Additionally, the effects of Fe doping contents and reaction temperature were investigated. When the ratio of Fe<sup>3+</sup> to Al<sup>3+</sup> was 1, corresponding to the MgFeAlO<sub>4</sub> spinel catalyst, the CO<sub>2</sub>-ODHE performance was optimal, yielding 23.3 % ethylene. Increasing the reaction temperature enhanced ethane conversion but reduced ethylene selectivity, with both ethane conversion and ethylene selectivity reaching approximately 49 % at 700 °C.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100327"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study compares the CO2-assisted oxidative dehydrogenation of ethane (CO2-ODHE) performance of Mg-Al spinel catalysts doped with various metals (Cr, Fe, Co, Ga) that possess dehydrogenation activity. Both experimental and theoretical analyses were conducted to explore the reaction mechanism of CO2-ODHE on the spinel catalyst. The findings indicate that the MgFeAlO4 spinel catalyst exhibited CO2-ODHE activity at 600 °C, achieving a CO2 conversion rate of 20.3 %, an ethane conversion rate of 27.9 %, and an ethylene selectivity of 87.9 %. Mechanistic studies revealed that CO2 activation primarily occurs through the reverse water-gas shift reaction, and density functional theory calculations identified the doped metal ions as the principal active sites for ethane activation. These results suggest that CO2-ODHE on the spinel surface follows a mechanism of catalytic dehydrogenation coupled with the reverse water-gas shift reaction. Additionally, the effects of Fe doping contents and reaction temperature were investigated. When the ratio of Fe3+ to Al3+ was 1, corresponding to the MgFeAlO4 spinel catalyst, the CO2-ODHE performance was optimal, yielding 23.3 % ethylene. Increasing the reaction temperature enhanced ethane conversion but reduced ethylene selectivity, with both ethane conversion and ethylene selectivity reaching approximately 49 % at 700 °C.