基于量子化学和CFD-DEM的钙钛矿氧载体还原动力学多尺度建模

Ruiwen Wang , Zhenshan Li , Lei Liu
{"title":"基于量子化学和CFD-DEM的钙钛矿氧载体还原动力学多尺度建模","authors":"Ruiwen Wang ,&nbsp;Zhenshan Li ,&nbsp;Lei Liu","doi":"10.1016/j.ccst.2024.100357","DOIUrl":null,"url":null,"abstract":"<div><div>The redox of oxygen carriers in chemical looping are non-catalytic heterogeneous reactions which involve physical and chemical processes spanning across four scales: the surface atoms, grains, particles, and the reactor. Although various models are presented in the literature for every single scale, the coupling between every two adjacent scales has not been completely integrated due to the computational cost. A multiscale reaction kinetics model coupling all four scales is developed in this study, combining density-functional theory calculation for reaction mechanisms, microkinetics for grain conversion, the Fick's Law for intraparticle gas diffusion, and CFD–DEM for fluidization. Three coupling simplifications are adopted to reduce computational cost, including the partial equilibrium assumption, continuous grain distribution, and Thiele's-modulus-based effectiveness factor model. Computation is conducted for the reduction of a perovskite oxygen carrier (CaMn<sub>0.375</sub>Ti<sub>0.5</sub>Fe<sub>0.125</sub>O<sub>3−</sub><em><sub>δ</sub></em>) by CO, which is experimentally verified on a micro-fluidized-bed thermogravimetric analyzer. The influences of parameters including the temperature, gas concentration, active site density, specific surface area, and particle diversity, are discussed, providing a comparison on the weights of every scale in the process.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100357"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale modeling for the reduction kinetics of a perovskite oxygen carrier based on quantum chemistry and CFD–DEM\",\"authors\":\"Ruiwen Wang ,&nbsp;Zhenshan Li ,&nbsp;Lei Liu\",\"doi\":\"10.1016/j.ccst.2024.100357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The redox of oxygen carriers in chemical looping are non-catalytic heterogeneous reactions which involve physical and chemical processes spanning across four scales: the surface atoms, grains, particles, and the reactor. Although various models are presented in the literature for every single scale, the coupling between every two adjacent scales has not been completely integrated due to the computational cost. A multiscale reaction kinetics model coupling all four scales is developed in this study, combining density-functional theory calculation for reaction mechanisms, microkinetics for grain conversion, the Fick's Law for intraparticle gas diffusion, and CFD–DEM for fluidization. Three coupling simplifications are adopted to reduce computational cost, including the partial equilibrium assumption, continuous grain distribution, and Thiele's-modulus-based effectiveness factor model. Computation is conducted for the reduction of a perovskite oxygen carrier (CaMn<sub>0.375</sub>Ti<sub>0.5</sub>Fe<sub>0.125</sub>O<sub>3−</sub><em><sub>δ</sub></em>) by CO, which is experimentally verified on a micro-fluidized-bed thermogravimetric analyzer. The influences of parameters including the temperature, gas concentration, active site density, specific surface area, and particle diversity, are discussed, providing a comparison on the weights of every scale in the process.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"14 \",\"pages\":\"Article 100357\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824001684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学环中氧载体的氧化还原是一种非催化非均相反应,涉及四个尺度的物理和化学过程:表面原子、颗粒、颗粒和反应器。虽然文献中针对单个尺度提出了各种模型,但由于计算成本的原因,并没有完全整合相邻两个尺度之间的耦合。结合反应机理的密度泛函理论计算、颗粒转化的微动力学计算、颗粒内气体扩散的菲克定律计算和流化的CFD-DEM计算,建立了一个耦合这四个尺度的多尺度反应动力学模型。为了降低计算成本,采用了三种耦合简化方法,包括部分平衡假设、连续颗粒分布和基于Thiele模的有效性因子模型。用CO还原钙钛矿氧载体CaMn0.375Ti0.5Fe0.125O3−δ进行了计算,并在微流化床热重分析仪上进行了实验验证。讨论了温度、气体浓度、活性位点密度、比表面积和颗粒多样性等参数的影响,并对过程中各个尺度的权重进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale modeling for the reduction kinetics of a perovskite oxygen carrier based on quantum chemistry and CFD–DEM
The redox of oxygen carriers in chemical looping are non-catalytic heterogeneous reactions which involve physical and chemical processes spanning across four scales: the surface atoms, grains, particles, and the reactor. Although various models are presented in the literature for every single scale, the coupling between every two adjacent scales has not been completely integrated due to the computational cost. A multiscale reaction kinetics model coupling all four scales is developed in this study, combining density-functional theory calculation for reaction mechanisms, microkinetics for grain conversion, the Fick's Law for intraparticle gas diffusion, and CFD–DEM for fluidization. Three coupling simplifications are adopted to reduce computational cost, including the partial equilibrium assumption, continuous grain distribution, and Thiele's-modulus-based effectiveness factor model. Computation is conducted for the reduction of a perovskite oxygen carrier (CaMn0.375Ti0.5Fe0.125O3−δ) by CO, which is experimentally verified on a micro-fluidized-bed thermogravimetric analyzer. The influences of parameters including the temperature, gas concentration, active site density, specific surface area, and particle diversity, are discussed, providing a comparison on the weights of every scale in the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信