BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202470021
{"title":"BioEssays 12/2024","authors":"","doi":"10.1002/bies.202470021","DOIUrl":"https://doi.org/10.1002/bies.202470021","url":null,"abstract":"<p>Human pluripotent stem cells acquire mutations in culture. The resulting genetically variant cells that possess advantageous phenotypes are selected in culture over time, eventually leading to their overtake. In article 2400062, John Vales and Ivana Barbaric highlight a collection of genetic variations that are recurrently found in stem cell culture. The authors also recollect how our understanding of genetically variant human pluripotent stem cells has grown over the past 20 years since the discovery of these aberrant cells in 2004, particularly bringing attention to the phenotypes associated with specific recurrent variants, how these are similar to those found in cancer cells, and how they might affect the applications of human pluripotent stem cells in both clinical and research settings.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202470021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202400239
{"title":"In grateful recognition of our Editorial Board","authors":"","doi":"10.1002/bies.202400239","DOIUrl":"10.1002/bies.202400239","url":null,"abstract":"<p>At the end of the year, we would like once again to express our deep thanks to the members of our Editorial Board listed below for their valuable input. We are grateful for their involvement in various aspects of the journal.</p><p>After 10 years of service, we say goodbye to Matt Kaeberlein, Bernd Schierwater, Michael Shen, and Reiner Veitia, and wish them all the best for their research.</p><p> \u0000 </p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400239","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202400161
Tiantian Li, Saskia A Hogenhout, Weijie Huang
{"title":"Ubiquitin-Independent Degradation: An Emerging PROTAC Approach?","authors":"Tiantian Li, Saskia A Hogenhout, Weijie Huang","doi":"10.1002/bies.202400161","DOIUrl":"https://doi.org/10.1002/bies.202400161","url":null,"abstract":"<p><p>Targeted protein degradation (TPD) has emerged as a highly promising approach for eliminating disease-associated proteins in the field of drug discovery. Among the most advanced TPD technologies, PROteolysis TArgeting Chimera (PROTAC), functions by bringing a protein of interest (POI) into proximity with an E3 ubiquitin ligase, leading to ubiquitin (Ub)-dependent proteasomal degradation. However, the designs of most PROTACs are based on the utilization of a limited number of available E3 ligases, which significantly restricts their potential. Recent studies have shown that phytoplasmas, a group of bacterial plant pathogens, have developed several E3- and ubiquitin-independent proteasomal degradation (UbInPD) mechanisms for breaking down host targets. This suggests an alternative approach for substrate recruitment and TPD. Here, we present existing evidence that supports the feasibility of UbInPD in eukaryotic cells and propose candidate proteins that can serve as docking sites for the development of E3-independent PROTACs.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400161"},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202400190
Akinobu Ohba, Hiroshi Yamaguchi
{"title":"The Art of Chilling Out: How Neurons Regulate Torpor.","authors":"Akinobu Ohba, Hiroshi Yamaguchi","doi":"10.1002/bies.202400190","DOIUrl":"https://doi.org/10.1002/bies.202400190","url":null,"abstract":"<p><p>Endothermic animals expend significant energy to maintain high body temperatures, which offers adaptability to varying environmental conditions. However, this high metabolic rate requires increased food intake. In conditions of low environmental temperature and scarce food resources, some endothermic animals enter a hypometabolic state known as torpor to conserve energy. Torpor involves a marked reduction in body temperature, heart rate, respiratory rate, and locomotor activity, enabling energy conservation. Despite their biological significance and potential medical applications, the neuronal mechanisms regulating torpor still need to be fully understood. Recent studies have focused on fasting-induced daily torpor in mice due to their suitability for advanced neuroscientific techniques. In this review, we highlight recent advances that extend our understanding of neuronal mechanisms regulating torpor. We also discuss unresolved issues in this research field and future directions.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400190"},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202400213
Sherif Rashad
{"title":"Queuosine tRNA Modification: Connecting the Microbiome to the Translatome.","authors":"Sherif Rashad","doi":"10.1002/bies.202400213","DOIUrl":"https://doi.org/10.1002/bies.202400213","url":null,"abstract":"<p><p>Transfer RNA (tRNA) modifications play an important role in regulating mRNA translation at the codon level. tRNA modifications can influence codon selection and optimality, thus shifting translation toward specific sets of mRNAs in a dynamic manner. Queuosine (Q) is a tRNA modification occurring at the wobble position. In eukaryotes, queuosine is synthesized by the tRNA-guanine trans-glycosylase (TGT) complex, which incorporates the nucleobase queuine (or Qbase) into guanine of the GUN anticodons. Queuine is sourced from gut bacteria and dietary intake. Q was recently shown to be critical for cellular responses to oxidative and mitochondrial stresses, as well as its potential role in neurodegenerative diseases and brain health. These unique features of Q provide an interesting insight into the regulation of mRNA translation by gut bacteria, and the potential health implications. In this review, Q biology is examined in the light of recent literature and nearly 4 decades of research. Q's role in neuropsychiatric diseases and cancer is highlighted and discussed. Given the recent interest in Q, and the new findings, more research is needed to fully comprehend its biological function and disease relevance, especially in neurobiology.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e2400213"},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202400237
{"title":"A word of heartfelt thanks to our reviewers","authors":"","doi":"10.1002/bies.202400237","DOIUrl":"10.1002/bies.202400237","url":null,"abstract":"","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-14DOI: 10.1002/bies.202400194
Markus Friedrich
{"title":"Newly discovered harvestmen relict eyes eyeing for their functions.","authors":"Markus Friedrich","doi":"10.1002/bies.202400194","DOIUrl":"10.1002/bies.202400194","url":null,"abstract":"<p><p>Most chelicerates operate the world with two kinds of visual organs, the median and lateral eyes of the arthropod ground plan. In harvestmen (Opiliones), however, members of the small and withdrawn suborder Cyphophthalmi lack eyes except for two genera with lateral eyes. In the other suborders (Eupnoi, Dyspnoi, and Laniatores), lateral eyes are absent but median eyes pronounced. To resolve the phylogenetic history of these contrasting trait states and the taxonomic position of a four-eyed harvestmen fossil, visual system development was recently studied in the daddy longleg Phalangium opilio (Eupnoi). This effort uncovered not only a highly regressed and internalized pair of lateral eyes but also a similarly cryptic pair of additional median eyes. After recounting the evo-devo discovery journey of uncompromising harvestmen taxonomists, this review explores comparative evidence that the enigmatic P. opilio relict eyes might serve the multichannel zeitgeber system of the biological clock.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e2400194"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-11DOI: 10.1002/bies.202400207
Paula Follert, Linda Große-Segerath, Eckhard Lammert
{"title":"Blood flow-induced angiocrine signals promote organ growth and regeneration.","authors":"Paula Follert, Linda Große-Segerath, Eckhard Lammert","doi":"10.1002/bies.202400207","DOIUrl":"https://doi.org/10.1002/bies.202400207","url":null,"abstract":"<p><p>Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e2400207"},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-11DOI: 10.1002/bies.202400164
Heather D Curtsinger, Sofía Martínez-Absalón, Yuchang Liu, Allison J Lopatkin
{"title":"The metabolic burden associated with plasmid acquisition: An assessment of the unrecognized benefits to host cells.","authors":"Heather D Curtsinger, Sofía Martínez-Absalón, Yuchang Liu, Allison J Lopatkin","doi":"10.1002/bies.202400164","DOIUrl":"https://doi.org/10.1002/bies.202400164","url":null,"abstract":"<p><p>Bacterial conjugation, wherein DNA is transferred between cells through direct contact, is highly prevalent in complex microbial communities and is responsible for spreading myriad genes related to human and environmental health. Despite their importance, much remains unknown regarding the mechanisms driving the spread and persistence of these plasmids in situ. Studies have demonstrated that transferring, acquiring, and maintaining a plasmid imposes a significant metabolic burden on the host. Simultaneously, emerging evidence suggests that the presence of a conjugative plasmid can also provide both obvious and unexpected benefits to their host and local community. Combined, this highlights a continuous cost-benefit tradeoff at the population level, likely contributing to overall plasmid abundance and long-term persistence. Yet, while the metabolic burdens of plasmid conjugation, and their causes, are widely studied, their attendant potential advantages are less clear. Here, we summarize current perspectives on conjugative plasmids' metabolic burden and then highlight the lesser-appreciated yet critical benefits that plasmid-mediated metabolic burdens may provide. We argue that this largely unexplored tradeoff is critical to both a fundamental theory of microbial populations and engineering applications and therefore warrants further detailed study.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e2400164"},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-09DOI: 10.1002/bies.202400125
Damiano Mangoni, Aurora Mazzetti, Federico Ansaloni, Alessandro Simi, Gian Gaetano Tartaglia, Luca Pandolfini, Stefano Gustincich, Remo Sanges
{"title":"From the genome's perspective: Bearing somatic retrotransposition to leverage the regulatory potential of L1 RNAs.","authors":"Damiano Mangoni, Aurora Mazzetti, Federico Ansaloni, Alessandro Simi, Gian Gaetano Tartaglia, Luca Pandolfini, Stefano Gustincich, Remo Sanges","doi":"10.1002/bies.202400125","DOIUrl":"https://doi.org/10.1002/bies.202400125","url":null,"abstract":"<p><p>Transposable elements (TEs) are mobile genomic elements constituting a big fraction of eukaryotic genomes. They ignite an evolutionary arms race with host genomes, which in turn evolve strategies to restrict their activity. Despite being tightly repressed, TEs display precisely regulated expression patterns during specific stages of mammalian development, suggesting potential benefits for the host. Among TEs, the long interspersed nuclear element (LINE-1 or L1) has been found to be active in neurons. This activity prompted extensive research into its possible role in cognition. So far, no specific cause-effect relationship between L1 retrotransposition and brain functions has been conclusively identified. Nevertheless, accumulating evidence suggests that interactions between L1 RNAs and RNA/DNA binding proteins encode specific messages that cells utilize to activate or repress entire transcriptional programs. We summarize recent findings highlighting the activity of L1 RNAs at the non-coding level during early embryonic and brain development. We propose a hypothesis suggesting a mutualistic relationship between L1 mRNAs and the host cell. In this scenario, cells tolerate a certain rate of retrotransposition to leverage the regulatory effects of L1s as non-coding RNAs on potentiating their mitotic potential. In turn, L1s benefit from the cell's proliferative state to increase their chance to mobilize.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e2400125"},"PeriodicalIF":3.2,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}