BioEssaysPub Date : 2024-12-11DOI: 10.1002/bies.202300197
Ceniz Zihni
{"title":"Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics","authors":"Ceniz Zihni","doi":"10.1002/bies.202300197","DOIUrl":"10.1002/bies.202300197","url":null,"abstract":"<p>The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a “nibbling” action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an “integrin adhesome-like” network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202300197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-12-09DOI: 10.1002/bies.202400278
Riikka Kivelä
{"title":"Decoding Angiocrine Signaling: Endothelial Cells as Drivers of Organ Regeneration and Homeostasis.","authors":"Riikka Kivelä","doi":"10.1002/bies.202400278","DOIUrl":"https://doi.org/10.1002/bies.202400278","url":null,"abstract":"","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400278"},"PeriodicalIF":3.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-12-09DOI: 10.1002/bies.202400183
Jean-Pascal Capp, Benoît Aliaga, Vera Pancaldi
{"title":"Evidence of Epigenetic Oncogenesis: A Turning Point in Cancer Research.","authors":"Jean-Pascal Capp, Benoît Aliaga, Vera Pancaldi","doi":"10.1002/bies.202400183","DOIUrl":"https://doi.org/10.1002/bies.202400183","url":null,"abstract":"<p><p>In cancer research, the term epigenetics was used in the 1970s in its modern sense encompassing non-genetic events modifying the chromatin state, mainly to oppose the emerging oncogene paradigm. However, starting from the establishment of this prominent concept, the importance of these epigenetic phenomena in cancer rarely led to questioning the causal role of genetic alterations. Only in the last 10 years, the accumulation of problematic data, better experimental technologies, and some ambitious models pushed the idea that epigenetics could be at least as important as genetics in early oncogenesis. Until this year, a direct demonstration of epigenetic oncogenesis was still lacking. Now, Parreno, Cavalli and colleagues, using a refined experimental model in the fruit fly Drosophila melanogaster, enforced the initiation of tumors solely by imposing a transient loss of Polycomb repression, leading to a purely epigenetic oncogenesis phenomenon. Despite a few caveats that we discuss, this pioneering work represents a major breakpoint in cancer research. We are led to consider the theoretical and conceptual implications on oncogenesis and to search for links between this artificial experimental model and naturally occurring processes, while revisiting cancer theories that were previously proposed as alternatives to the oncogene-centered paradigm.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400183"},"PeriodicalIF":3.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-12-09DOI: 10.1002/bies.202400200
Vitalii Zablotskii, Tatyana Polyakova, Alexandr Dejneka
{"title":"Exploring Ion Channel Magnetic Pharmacology: Are Magnetic Cues a Viable Alternative to Ion Channel Drugs?","authors":"Vitalii Zablotskii, Tatyana Polyakova, Alexandr Dejneka","doi":"10.1002/bies.202400200","DOIUrl":"https://doi.org/10.1002/bies.202400200","url":null,"abstract":"<p><p>We explore the potential of using magnetic cues as a novel approach to modulating ion channel expression, which could provide an alternative to traditional pharmacological interventions. Ion channels are crucial targets for pharmacological therapies, and ongoing research in this field continues to introduce new methods for treating various diseases. However, the efficacy of ion channel drugs is often compromised by issues such as target selectivity, leading to side effects, toxicity, and complex drug interactions. These challenges, along with problems like drug resistance and difficulties in crossing biological barriers, highlight the need for innovative strategies. In this context, the proposed use of magnetic cues to modulate ion channel expression may offer a promising solution to address these limitations, potentially improving the safety and effectiveness of treatments, particularly for long-term use. Key developments in this area are reviewed, the relationships between changes in ion channel expression and magnetic fields are summarized, knowledge gaps are identified, and central issues relevant to future research are discussed.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400200"},"PeriodicalIF":3.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-12-02DOI: 10.1002/bies.202400196
Michael Levin
{"title":"The Multiscale Wisdom of the Body: Collective Intelligence as a Tractable Interface for Next-Generation Biomedicine.","authors":"Michael Levin","doi":"10.1002/bies.202400196","DOIUrl":"https://doi.org/10.1002/bies.202400196","url":null,"abstract":"<p><p>The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material-from molecular to organismal scales-reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400196"},"PeriodicalIF":3.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202400192
Peter W. Andrews
{"title":"From cancer to pluripotent stem cells–A long and winding road","authors":"Peter W. Andrews","doi":"10.1002/bies.202400192","DOIUrl":"10.1002/bies.202400192","url":null,"abstract":"<p>We are now on the cusp of realizing the promise of Pluripotent Stem Cells (PSCs) as powerful tools for exploring disease mechanisms, facilitating the discovery of new drugs and replacing diseased or damaged tissues, just 26 years since Jamie Thomson first described the long-term culture of human embryonic stem (ES) cells,<sup>[</sup><span><sup>1</sup></span><sup>]</sup> and 18 years since Shinya Yamanaka discovered how to reprogram somatic cells to produce induced pluripotent stem (iPS) cells with a state equivalent to that of ES cells.<sup>[</sup><span><sup>2</sup></span><sup>]</sup> But this field has a much longer experimental history, stretching back to 1954 when Leroy Stevens first described the propensity of male laboratory mice of the 129 inbred strain to develop testicular teratomas.<sup>[</sup><span><sup>3</sup></span><sup>]</sup> In many ways, the PSC field provides a striking example of how science develops through a labyrinth of pathways–some successful, some not so successful, sometimes leading in unexpected directions and arriving in places far removed from those originally envisaged.</p><p>So much of modern life depends on technology that we often take for granted and, consequently, we pay little attention to how the underlying science developed–who did it, and why? A case in point is our recent experience of the Covid pandemic. As that fades in our collective memory, we forget how remarkable it was that within a year of the first cases being identified in China, the virus had been isolated, its genome sequenced, rapid assays based upon PCR developed and innovative vaccines produced. However, the knowledge that made possible that rapid response to Covid came from diverse research stretching back over the past century or more–the identification of DNA and later RNA as carriers of genetic information, the deciphering of the genetic code, and recognition of its universality to all living organisms, the understanding of the mechanisms that protect some bacteria from infection with some viruses, leading to the discovery of restriction enzymes used as tools for DNA sequencing, or the discovery of heat stable Taq polymerase in bacteria growing in hot volcanic springs that allowed the development of PCR. Yet none of this research was remotely driven by thoughts of solving the problems of a novel viral pandemic. It was mostly impelled by the curiosity of individual scientists, with funding often provided through peer-reviewed grants focused on increasing basic knowledge, not trying to solve specific practical problems. It was also supported by teamwork and widespread open communication between the different research groups involved, many in different countries, an atmosphere well captured by Horace Judson in his book, “<i>The Eighth Day of Creation</i>,” about the development of molecular biology.<sup>[</sup><span><sup>4</sup></span><sup>]</sup> Yet it often seems that we are in danger of ignoring these lessons as governments, funding ag","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202470019
{"title":"BioEssays 12/2024","authors":"","doi":"10.1002/bies.202470019","DOIUrl":"https://doi.org/10.1002/bies.202470019","url":null,"abstract":"<p>Human pluripotent stem cells can differentiate to all cells of the body, including those of the heart. The heart contains multiple cell types but the contractile cells are called cardiomyocytes. In article 2400078, Christine Mummery describes her serendipitous finding on how to induce differentiation of human embryonic stem cells into cardiomyocytes by co-culture with visceral endoderm. This was later reproduced in human induced pluripotent stem cells using growth factors. The contractile apparatus of cardiomyocytes, which consists of structures called sarcomeres, is clearly evident in these cells after antibody staining. hiPSC can be derived from patients with different cardiac diseases. Cardiomyocytes from these hiPSC often capture patient phenotypes. This has led both to new insights into mechanisms underlying genetic cardiac diseases, like myopathies or arrhythmias, and created opportunities for discovering new drugs to treat these conditions and to assess their cardiac safety, without using animal models.</p><p>The image shows immunofluorescent staining of sarcomeres, the contractile units of the human heart, in cardiomycytes derived from human induced pluripotent stem cells. Staining is for cardiac Troponin T (green) and α-sarcomeric actinin (red). Nuclei are stained blue with Hoechst. Credit to Viviana Meraviglia.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202470019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioEssaysPub Date : 2024-11-26DOI: 10.1002/bies.202400230
Elodie Lafont, Eric Chevet
{"title":"Ubiquitin and Ubiquitin-Like Modifications in Organelle Stress Signaling: Ub, Ub, Ub, Ub, Stayin' Alive, Stayin' Alive.","authors":"Elodie Lafont, Eric Chevet","doi":"10.1002/bies.202400230","DOIUrl":"https://doi.org/10.1002/bies.202400230","url":null,"abstract":"<p><p>Due to various intracellular and external cues, cellular organelles are frequently stressed in both physiological and pathological conditions. Sensing these stresses initiates various signaling pathways which may lead to adaptation of the stressed cells or trigger its their death. At the unicellular level, this stress signaling involves a crosstalk between different organelles. At the multicellular level, such pathways can contribute to indicate the presence of a stressed cell to its neighboring cells. Here, we highlight the crucial and diverse roles played by Ubiquitin and Ubiquitin-like modification in organelle stress signaling.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400230"},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}