Louise B. Sennett, Lindsay D. Brin, Claudia Goyer, Bernie J. Zebarth, David L. Burton
{"title":"Effects of soil water content at freezing, thaw temperature, and snowmelt infiltration on N2O emissions and denitrifier gene and transcript abundance during a single freeze-thaw event","authors":"Louise B. Sennett, Lindsay D. Brin, Claudia Goyer, Bernie J. Zebarth, David L. Burton","doi":"10.1007/s00374-024-01817-w","DOIUrl":"https://doi.org/10.1007/s00374-024-01817-w","url":null,"abstract":"<p>Climate change-related warming and increased precipitation may alter winter snow cover and thawing events, and therefore, may carry significant consequences for nitrous oxide (N<sub>2</sub>O) production pathways such as denitrification, and the abundance and expression of denitrifying microorganisms. We used a soil microcosm study to investigate the combined effect of soil thaw temperature, initial water filled pore space (WFPS) prior to soil freezing, and snowmelt infiltration simulated by the addition of water on N<sub>2</sub>O emission and denitrification rates, soil respiration rate, and the abundance and transcription of denitrifying (<i>nirK</i>, <i>nirS</i>, and <i>nosZ</i>) bacteria during a single freeze-thaw event. Soil respiration rate was primarily controlled by an increase in soil thaw temperature, whereas soil N<sub>2</sub>O emission and denitrification rates were generally greater in soils with a higher initial WFPS and soil thaw temperature. In contrast, snowmelt infiltration generally had a negligible effect on these rates, which may be related to pre-existing soil conditions that were already conducive to denitrification. Unexpectedly, the <i>nosZ</i> transcript/<i>nosZ</i> gene abundance ratio was lower in soils thawed at 8.0 °C compared to 1.5 °C; however, this may have resulted in a lower N<sub>2</sub>O reduction, thus explaining the greater levels of N<sub>2</sub>O emitted from soils thawed at 8.0 °C. Overall, this study demonstrated that increased N<sub>2</sub>O production during a single freeze-thaw event was primarily linked to antecedent conditions of high initial WFPS, soil thaw temperature, and a synergistic interplay between these two environmental parameters, and provides evidence that an increase in annual temperature and precipitation, along with the timing of precipitation, may further stimulate N<sub>2</sub>O production pathways.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"13 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cynthia Albracht, Marcel Dominik Solbach, Justus Hennecke, Leonardo Bassi, Geert Roelof van der Ploeg, Nico Eisenhauer, Alexandra Weigelt, François Buscot, Anna Heintz-Buschart
{"title":"Common soil history is more important than plant history for arbuscular mycorrhizal community assembly in an experimental grassland diversity gradient","authors":"Cynthia Albracht, Marcel Dominik Solbach, Justus Hennecke, Leonardo Bassi, Geert Roelof van der Ploeg, Nico Eisenhauer, Alexandra Weigelt, François Buscot, Anna Heintz-Buschart","doi":"10.1007/s00374-024-01821-0","DOIUrl":"https://doi.org/10.1007/s00374-024-01821-0","url":null,"abstract":"<p>The relationship between biodiversity and ecosystem functioning strengthens with ecosystem age. However, the interplay between the plant diversity - ecosystem functioning relationship and Glomeromycotinian arbuscular mycorrhizal fungi (AMF) community assembly has not yet been scrutinized in this context, despite AMF’s role in plant survival and niche exploration. We study the development of AMF communities by disentangling soil- and plant-driven effects from calendar year effects. Within a long-term grassland biodiversity experiment, the pre-existing plant communities of varying plant diversity were re-established as split plots with combinations of common plant and soil histories: split plots with neither common plant nor soil history, with only soil but no plant history, and with both common plant and soil history. We found that bulk soil AMF communities were primarily shaped by common soil history, and additional common plant history had little effect. Further, the steepness of AMF diversity and plant diversity relationship did not strengthen over time, but AMF community evenness increased with common history. Specialisation of AMF towards plant species was low throughout, giving no indication of AMF communities specialising or diversifying over time. The potential of bulk soil AMF as mediators of variation in plant and microbial biomass over time and hence as drivers of biodiversity and ecosystem relationships was low. Our results suggest that soil processes may be key for the build-up of plant community-specific mycorrhizal communities with likely feedback effects on ecosystem productivity, but the plant-available mycorrhizal pool in bulk soil itself does not explain the strengthening of biodiversity and ecosystem relationships over time.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"58 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-term effect of liquid organic fertilisation and application methods on N2, N2O and CO2 fluxes from a silt loam arable soil","authors":"Balázs Grosz, Stefan Burkart, Reinhard Well","doi":"10.1007/s00374-024-01814-z","DOIUrl":"https://doi.org/10.1007/s00374-024-01814-z","url":null,"abstract":"<p>The absence of N<sub>2</sub> flux measurements in liquid manure-amended soils has resulted in a poor understanding of the effect of manure application on gaseous N losses. The aim of this study was to quantify N<sub>2</sub>, N<sub>2</sub>O, CO<sub>2</sub>, N<sub>2</sub>O reduction to N<sub>2</sub>, depth distribution of moisture, water-extractable organic C, NO<sub>3</sub><sup>−</sup>, NH<sub>4</sub><sup>+</sup>, pH, and diffusivity in a laboratory incubation experiment with an arable silt-loam soil. To quantify N processes and gaseous fluxes, <sup>15</sup>N tracing was applied. An artificial livestock slurry-mixture was added to the soil in various treatments (control, surface or injected application; slurry-application rate: 42.9 kg N ha<sup>− 1</sup>; soil water content of either 40% or 60% water-filled pore space (WFPS)). The soil was incubated for 10 days. The depth distribution of the control parameters was measured twice during the experiment on days 5 and 10. The average increase in N<sub>2</sub> and N<sub>2</sub>O fluxes from denitrification was about 900% in slurry-amended soils. The highest N<sub>2</sub> and N<sub>2</sub>O fluxes from denitrification were measured in the slurry injection, 60% WFPS treatment (7.83 ± 3.50 and 11.22 ± 7.60 mg N m<sup>− 2</sup> d<sup>− 1</sup>, respectively). The hypothesis that injected slurry at a higher water content enhances denitrification was confirmed. This study provides important insights into the formation, spatial and temporal variation of the manure-soil hotspot and its impact on the denitrification process. The results will form part of a dataset to develop, improve and test manure application submodules of biogeochemical models and will help to understand in detail the effect of hotspots on N-cycling in manure-treated soils.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"56 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Eckei, Reinhard Well, Martin Maier, Amanda Matson, Klaus Dittert, Pauline Sophie Rummel
{"title":"Determining N2O and N2 fluxes in relation to winter wheat and sugar beet growth and development using the improved 15N gas flux method on the field scale","authors":"Jonas Eckei, Reinhard Well, Martin Maier, Amanda Matson, Klaus Dittert, Pauline Sophie Rummel","doi":"10.1007/s00374-024-01806-z","DOIUrl":"https://doi.org/10.1007/s00374-024-01806-z","url":null,"abstract":"<p>The objectives of this field trial were to collect reliable measurement data on N<sub>2</sub> emissions and N<sub>2</sub>O/(N<sub>2</sub>O + N<sub>2</sub>) ratios in typical German crops in relation to crop development and to provide a dataset to test and improve biogeochemical models. N<sub>2</sub>O and N<sub>2</sub> emissions in winter wheat (WW, <i>Triticum aestivum</i> L.) and sugar beet (SB, <i>Beta vulgaris</i> subsp. <i>vulgaris</i>) were measured using the improved <sup>15</sup>N gas flux method with helium–oxygen flushing (80:20) to reduce the atmospheric N<sub>2</sub> background to < 2%. To estimate total N<sub>2</sub>O and N<sub>2</sub> production in soil, production-diffusion modelling was applied. Soil samples were taken in regular intervals and analyzed for mineral N (NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup>) and water-extractable Corg content. In addition, we monitored soil moisture, crop development, plant N uptake, N transformation processes in soil, and N translocation to deeper soil layers. Our best estimates for cumulative N<sub>2</sub>O + N<sub>2</sub> losses were 860.4 ± 220.9 mg N m<sup>−2</sup> and 553.1 ± 96.3 mg N m<sup>−2</sup> over the experimental period of 189 and 161 days with total N<sub>2</sub>O/(N<sub>2</sub>O + N<sub>2</sub>) ratios of 0.12 and 0.15 for WW and SB, respectively. Growing plants affected all controlling factors of denitrification, and dynamics clearly differed between crop species. Overall, N<sub>2</sub>O and N<sub>2</sub> emissions were highest when plant N and water uptake were low, i.e., during early growth stages, ripening, and after harvest. We present the first dataset of a plot-scale field study employing the improved <sup>15</sup>N gas flux method over a growing season showing that drivers for N<sub>2</sub>O and N<sub>2</sub>O + N<sub>2</sub> fluxes differ between crop species and change throughout the growing season.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"46 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140346099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Hemkemeyer, Sanja A. Schwalb, Clara Berendonk, Stefan Geisen, Stefanie Heinze, Rainer Georg Joergensen, Rong Li, Peter Lövenich, Wu Xiong, Florian Wichern
{"title":"Potato yield and quality are linked to cover crop and soil microbiome, respectively","authors":"Michael Hemkemeyer, Sanja A. Schwalb, Clara Berendonk, Stefan Geisen, Stefanie Heinze, Rainer Georg Joergensen, Rong Li, Peter Lövenich, Wu Xiong, Florian Wichern","doi":"10.1007/s00374-024-01813-0","DOIUrl":"https://doi.org/10.1007/s00374-024-01813-0","url":null,"abstract":"<p>Crop-specific cultivation practices including crop rotation, cover cropping, and fertilisation are key measures for sustainable farming, for which soil microorganisms are important components. This study aims at identifying links between agronomic practices, potato yield and quality as well as soil microorganisms. We analysed the roles of cover crops and of the soil prokaryotic, fungal, and protistan communities in a long-term trial, differing in crop rotation, i.e. winter wheat or silage maize as pre-crop, presence and positioning of oil radish within the rotation, and fertilisation, i.e. mineral fertiliser, straw, manure, or slurry. Up to 16% higher yields were observed when oil radish grew directly before potatoes. Losses of potato quality due to infection with <i>Rhizoctonia solani</i>-induced diseases and common scab was 43–63% lower when wheat + oil radish was pre-crop under manure or straw + slurry fertilisation than for maize as pre-crop. This contrast was also reflected by 42% higher fungal abundance and differences in β-diversity of prokaryotes, fungi, and protists. Those amplicon sequence variants, which were found in the treatments with highest potato qualities and differed in their abundances from other treatments, belonged to Firmicutes (2.4% of the sequences) and Mortierellaceae (28%), which both comprise potential antagonists of phytopathogens. Among protists, Lobosa, especially <i>Copromyxa</i>, was 62% more abundant in the high potato quality plots compared to all others, suggesting that specific higher trophic organisms can improve crop performance. Our findings suggest that successful potato cultivation is related (1) to planting of oil radish before potatoes for increasing yield and (2) to fertilisation with manure or straw + slurry for enriching the microbiome with crop-beneficial taxa.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"6 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140346057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dihe Yang, Lu Tang, Jiaxin Chen, Yimeng Shi, Hao Zhou, Hong Gao, Jian Jin, Changhong Guo
{"title":"Strategy of endophytic bacterial communities in alfalfa roots for enhancing plant resilience to saline–alkali stress and its application","authors":"Dihe Yang, Lu Tang, Jiaxin Chen, Yimeng Shi, Hao Zhou, Hong Gao, Jian Jin, Changhong Guo","doi":"10.1007/s00374-024-01816-x","DOIUrl":"https://doi.org/10.1007/s00374-024-01816-x","url":null,"abstract":"<p>Soil salinization is an abiotic stress factor that can harm plant growth. Root endophytic bacteria may be associated with the resilience of plants to saline–alkaline stress. This study investigated the diversity, composition, and function of endophytic bacterial communities in alfalfa roots under saline–alkali stress, and screened a key bacterial strain associated with saline–alkali resistance. 16 S rRNA amplicon sequencing showed that high levels of saline alkalinity significantly reduced the diversity of endophytic bacterial communities and the relative abundance of beneficial bacterial taxa, such as Rhizobiales and <i>Pseudomonas</i>. Long durations of saline–alkali significantly decreased the abundance of predicted functional genes related to nitrogen metabolism in the alfalfa root endophytic bacterial community. Additionally, we isolated a key strain <i>Pseudomonas</i> with saline-alkali tolerance which could colonise roots and considerably improve physiological characteristics and plant growth. We found that colonization with <i>Pseudomonas</i> can considerably enhance plant resistance to saline-alkali stress and that the composition and function of the endophytic bacterial communities in roots likely contribute to plant tolerance to saline-alkali stress.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"122 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyrogenic organic matter decreases while fresh organic matter increases soil heterotrophic respiration through modifying microbial activity in a subtropical forest","authors":"","doi":"10.1007/s00374-024-01815-y","DOIUrl":"https://doi.org/10.1007/s00374-024-01815-y","url":null,"abstract":"<h3>Abstract</h3> <p>As the carbon (C) credit market evolves, incorporating organic matter into soils has emerged as a key strategy in C farming. Soil heterotrophic respiration (R<sub>H</sub>) plays a pivotal role in maintaining the C balance in terrestrial ecosystems, yet the contrasting impacts of fresh and pyrogenic organic matter applications on soil R<sub>H</sub>, and associated underlying mechanisms, have not been fully investigated. Through a 2-year field experiment, we investigated how applying maize straw and its derived biochar affect the physical, chemical, and microbial properties of soil in a subtropical Moso bamboo forest. Results showed that straw application increased soil R<sub>H</sub>, while biochar application suppressed it. Soil R<sub>H</sub> was correlated positively with β-glucosidase and cellobiohydrolase activities but negatively with RubisCO enzyme activity. Increased soil R<sub>H</sub> under straw application was linked to the increased β-glucosidase/cellobiohydrolase activities driven by elevated water-soluble organic C and O-alkyl C levels as well as <em>GH48</em> and <em>cbh</em>I gene abundances, and the decreased RubisCO enzyme activity caused by reduced <em>cbbL</em> gene abundance. Conversely, reduced soil R<sub>H</sub> under biochar application was linked to reductions in β-glucosidase and cellobiohydrolase activities induced by increased aromatic C and decreased <em>GH48</em> and <em>cbh</em>I gene levels, and increases in RubisCO enzyme activity driven by higher <em>cbbL</em> gene abundance. More importantly, changes in soil R<sub>H</sub> were clearly linked to microbial dynamics. Specifically, increases in the relative abundances of Alphaproteobacteria and Sordariomycetes and decreases in AD3 and Tremellomycetes contributed to the enhanced soil R<sub>H</sub> under straw application. With biochar application, the reverse effect occurred, ultimately contributing to the reduced soil R<sub>H</sub>. Our study demonstrates that maize straw application increases while biochar application decreases soil R<sub>H</sub> in the subtropical forest. These findings reveal that biochar reduced soil R<sub>H</sub> through changing microbial activity in subtropical forests, providing insight into complex dynamics of soil C cycling in response to diverse interventions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"33 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear response of soil nitric oxide emissions to fertilizer nitrogen across croplands","authors":"","doi":"10.1007/s00374-024-01818-9","DOIUrl":"https://doi.org/10.1007/s00374-024-01818-9","url":null,"abstract":"<h3>Abstract</h3> <p>Nitric oxide (NO), as a short-lived climate forcer, has direct and indirect detrimental impacts on environmental quality and human health. The amount of nitrogen (N) fertilizer application to agricultural soils is considered a robust predictor of total NO emissions, but the estimates of cropland NO emissions have large uncertainties due to the widely used constant emission factors (EF) as e.g., default values recommended by Intergovernmental Panel on Climate Change (IPCC) methodologies. By compiling 223 field experiments with at least three N-input levels across various croplands, we performed a meta-analysis to determine how soil NO emissions respond to N inputs. Our results showed for the first time that the mean change in EF per unit of additional N input (∆EF) across all available data was significantly higher as compared to zero, indicating that the NO response to N additions increased significantly faster than the assumed linear. On average, upland grain crops showed significantly higher ∆EF than that of horticultural crops or lowland rice. A higher ∆EF was also appeared in sites with mean annual precipitation < 600 mm, mean annual temperature ≥ 15 °C, soil organic carbon ≥ 14 g C kg<sup>− 1</sup> or total <em>N</em> ≥ 1.4 g N kg<sup>− 1</sup>, and where synthetic N fertilizers were usually applied. By assuming various N application rates, the IPCC default (0.7% or 1.1%) EF model would have overestimated or underestimated NO emissions compared to our ∆EF model. Overall, our meta-analysis results exert high potential to improve estimates of cropland NO inventories, and help address disparities in global NO budgets and develop more targeted mitigation efforts.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"131 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Canonical ammonia oxidizers and comammox Clade A play active roles in nitrification in a black soil at different pH and ammonium concentrations","authors":"Xin Bai, Xiaojing Hu, Junjie Liu, Zhenhua Yu, Jian Jin, Xiaobing Liu, Guanghua Wang","doi":"10.1007/s00374-024-01812-1","DOIUrl":"https://doi.org/10.1007/s00374-024-01812-1","url":null,"abstract":"<p>The discovery of complete ammonia oxidizers (comammox) challenged our cognition of the nitrification process. Ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and comammox can carry out soil autotrophic nitrification process together. However, the differentiation of the ecological niche of three types of ammonia oxidizers in different environments has not been fully discovered. In this study, a typical black soil collected from northeast China was adjusted to different pH (original and adjusted pH were 4.29 and 7, respectively) and NH<sub>4</sub><sup>+</sup>-N concentrations (weekly adding and without adding 100 mg NH<sub>4</sub><sup>+</sup>-N kg<sup>− 1</sup> soil). The activities of AOA, AOB and comammox were examined using DNA stable isotope probing approach with <sup>13</sup>CO<sub>2</sub>, the phylogenetic information of active ammonia oxidizers was detected by high-throughput sequencing. The results showed that niche differentiation of AOA, AOB and comammox in black soils differed with soil pH. AOA dominated the nitrification process in acidic soils, while AOA, AOB and comammox Clade A taken part in the nitrification process in neutral soils. Among them, AOB showed strong activity in the soils with the high N treatment. The active AOA mainly belonged to <i>Nitrososphaera</i> in acidic and neutral soils. The active AOB and comammox Clade A mainly belonged to <i>Nitrosospira</i> and Clade A.2 in neutral soils, respectively. Taken together, the results highlighted the significance of canonical ammonia oxidizers in nitrification process of black soils, and comammox Clade A played an active role in neutral condition.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"2015 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140188756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rainer Georg Joergensen, Michael Hemkemeyer, Lukas Beule, Janyl Iskakova, Zhyldyz Oskonbaeva, Pauline Sophie Rummel, Sanja Annabell Schwalb, Florian Wichern
{"title":"A hitchhiker’s guide: estimates of microbial biomass and microbial gene abundance in soil","authors":"Rainer Georg Joergensen, Michael Hemkemeyer, Lukas Beule, Janyl Iskakova, Zhyldyz Oskonbaeva, Pauline Sophie Rummel, Sanja Annabell Schwalb, Florian Wichern","doi":"10.1007/s00374-024-01810-3","DOIUrl":"https://doi.org/10.1007/s00374-024-01810-3","url":null,"abstract":"<p>Information on microbial biomass carbon (MBC) is crucial to assess their stocks and role for plant nutrient release in soil. Next to fumigation-extraction, molecular methods are routinely used to estimate the contribution of fungi, bacteria, and archaea to the soil microbial community. However, more information on the links between these different indices would deepen the understanding of microbial processes. The current study is based on 11 datasets, which contain MBC and MBN data obtained by fumigation-extraction and information on bacterial, archaeal, and fungal gene abundance, totalling 765 data points from agricultural, forest, and rangeland soils. Some of these datasets additionally provide information on double-stranded deoxyribonucleic acid (dsDNA) and fungal ergosterol. MBC varied around the median of 206 µg g<sup>−1</sup> soil. MBN followed with a median MB-C/N ratio of 4.1. Median microbial gene abundance declined from bacteria (96 × 10<sup>8</sup>) to archaea (4.4 × 10<sup>8</sup>) to fungi (1.8 × 10<sup>8</sup>). The median ratio of MBC/dsDNA was 15.8 and that of bacteria/dsDNA was 5.8 × 10<sup>8</sup> µg<sup>−1</sup>. The relationships between MBC and dsDNA as well as between bacterial gene abundance and dsDNA were both negatively affected by soil pH and positively by clay content. The median ergosterol/MBC and fungi/ergosterol ratios were 0.20% and 4.7 (n × 10<sup>8</sup> µg<sup>−1</sup>), respectively. The relationship between fungal gene abundance and ergosterol was negatively affected by soil pH and clay content. Our study suggests that combining fumigation-extraction with molecular tools allows more precise insights on the physiological interactions of soil microorganisms with their surrounding environment.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"105 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}