Modulation of volatile emissions in olive trees: sustained effect of Trichoderma afroharzianum T22 on induced plant defenses after simulated herbivory

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE
Martin Aguirrebengoa, Beatriz Moreno, Rafael Alcalá-Herrera, Rafael Núñez, Nuria Guirado, Juan M. García, María J. Pozo, Emilio Benítez
{"title":"Modulation of volatile emissions in olive trees: sustained effect of Trichoderma afroharzianum T22 on induced plant defenses after simulated herbivory","authors":"Martin Aguirrebengoa, Beatriz Moreno, Rafael Alcalá-Herrera, Rafael Núñez, Nuria Guirado, Juan M. García, María J. Pozo, Emilio Benítez","doi":"10.1007/s00374-024-01830-z","DOIUrl":null,"url":null,"abstract":"<p>We explored the activation of defense genes and the changes in volatile profiles in olive (<i>Olea europaea</i> var. Picual) plants subjected to mechanical wounding and prior soil inoculation with the fungus <i>Trichoderma afroharzianum</i> T22. Our findings indicate a sustained effect of the inoculant in olive plants, which shifted the constitutive volatile emission more significantly towards an aldehyde-dominated blend than the mechanical damage alone. Furthermore, we found that wounding alone did not alter the expression of hydroperoxide lyase genes associated with aldehyde biosynthesis. However, this expression was significantly enhanced when combined with prior T22 inoculation. Mechanical wounding amplified the plant’s immediate defensive response by enhancing the upregulation of the direct defense enzyme acetone cyanohydrin lyase. <i>Trichoderma afroharzianum</i> T22 also modulated direct defense, although to a lesser extent, and its effect persisted 9 months after inoculation. Metagenomic analyses revealed that aerial mechanical damage did influence specific root bacterial functions. Specifically, an upregulation of predicted bacterial functions related to various metabolic processes, including responses to biotic and abiotic stresses, was observed. On the contrary, T22’s impact on bacterial functional traits was minor and/or transient.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01830-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We explored the activation of defense genes and the changes in volatile profiles in olive (Olea europaea var. Picual) plants subjected to mechanical wounding and prior soil inoculation with the fungus Trichoderma afroharzianum T22. Our findings indicate a sustained effect of the inoculant in olive plants, which shifted the constitutive volatile emission more significantly towards an aldehyde-dominated blend than the mechanical damage alone. Furthermore, we found that wounding alone did not alter the expression of hydroperoxide lyase genes associated with aldehyde biosynthesis. However, this expression was significantly enhanced when combined with prior T22 inoculation. Mechanical wounding amplified the plant’s immediate defensive response by enhancing the upregulation of the direct defense enzyme acetone cyanohydrin lyase. Trichoderma afroharzianum T22 also modulated direct defense, although to a lesser extent, and its effect persisted 9 months after inoculation. Metagenomic analyses revealed that aerial mechanical damage did influence specific root bacterial functions. Specifically, an upregulation of predicted bacterial functions related to various metabolic processes, including responses to biotic and abiotic stresses, was observed. On the contrary, T22’s impact on bacterial functional traits was minor and/or transient.

Abstract Image

调节橄榄树的挥发物排放:模拟草食后黄曲霉 T22 对诱导植物防御能力的持续影响
我们研究了橄榄(Olea europaea var. Picual)植株在受到机械伤害并在土壤中事先接种非洲毛霉 T22 真菌后,其防御基因的活化和挥发性特征的变化。我们的研究结果表明,接种剂对橄榄植株的影响是持续的,与单纯的机械损伤相比,接种剂使构成挥发物更明显地转向以醛为主的混合挥发物。此外,我们还发现,单独的伤害不会改变与醛生物合成相关的过氧化氢裂解酶基因的表达。但是,如果结合之前的 T22 接种,这种表达就会明显增强。机械伤通过增强直接防御酶丙酮氰醇裂解酶的上调,扩大了植物的即时防御反应。黄曲霉 T22 也能调节直接防御,但程度较低,而且其效果在接种 9 个月后仍然存在。元基因组分析表明,气生机械损伤确实影响了根部细菌的特定功能。具体来说,与各种代谢过程(包括对生物和非生物胁迫的反应)相关的预测细菌功能出现了上调。相反,T22 对细菌功能特征的影响较小和/或短暂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信