Steffen Schlüter, Maik Lucas, Balazs Grosz, Olaf Ippisch, Jan Zawallich, Hongxing He, Rene Dechow, David Kraus, Sergey Blagodatsky, Mehmet Senbayram, Alexandra Kravchenko, Hans-Jörg Vogel, Reinhard Well
{"title":"The anaerobic soil volume as a controlling factor of denitrification: a review","authors":"Steffen Schlüter, Maik Lucas, Balazs Grosz, Olaf Ippisch, Jan Zawallich, Hongxing He, Rene Dechow, David Kraus, Sergey Blagodatsky, Mehmet Senbayram, Alexandra Kravchenko, Hans-Jörg Vogel, Reinhard Well","doi":"10.1007/s00374-024-01819-8","DOIUrl":"https://doi.org/10.1007/s00374-024-01819-8","url":null,"abstract":"<p>Denitrification is an important component of the nitrogen cycle in soil, returning reactive nitrogen to the atmosphere. Denitrification activity is often concentrated spatially in anoxic microsites and temporally in ephemeral events, which presents a challenge for modelling. The anaerobic fraction of soil volume can be a useful predictor of denitrification in soils. Here, we provide a review of this soil characteristic, its controlling factors, its estimation from basic soil properties and its implementation in current denitrification models. The concept of the anaerobic soil volume and its relationship to denitrification activity has undergone several paradigm shifts that came along with the advent of new oxygen and microstructure mapping techniques. The current understanding is that hotspots of denitrification activity are partially decoupled from air distances in the wet soil matrix and are mainly associated with particulate organic matter (POM) in the form of fresh plant residues or manure. POM fragments harbor large amounts of labile carbon that promote local oxygen consumption and, as a result, these microsites differ in their aeration status from the surrounding soil matrix. Current denitrification models relate the anaerobic soil volume fraction to bulk oxygen concentration in various ways but make little use of microstructure information, such as the distance between POM and air-filled pores. Based on meta-analyses, we derive new empirical relationships to estimate the conditions for the formation of anoxia at the microscale from basic soil properties and we outline how these empirical relationships could be used in the future to improve prediction accuracy of denitrification models at the soil profile scale.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"100 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Yuan, Ping Wu, Jiao Yuan, Zhifen Jia, Chunsheng Hu, Tim J. Clough, Nicole Wrage-Mönnig, Jiafa Luo, Jiahuan Tang, Shuping Qin
{"title":"Loading of redox-active metal Fe largely enhances the capacity of biochar to mitigate soil N2O emissions by promoting complete denitrification","authors":"Dan Yuan, Ping Wu, Jiao Yuan, Zhifen Jia, Chunsheng Hu, Tim J. Clough, Nicole Wrage-Mönnig, Jiafa Luo, Jiahuan Tang, Shuping Qin","doi":"10.1007/s00374-024-01823-y","DOIUrl":"https://doi.org/10.1007/s00374-024-01823-y","url":null,"abstract":"<p>Nitrous oxide (N<sub>2</sub>O) is a critical greenhouse gas and an ozone-depleting substance, with a global warming potential 298–310 times greater than that of CO<sub>2</sub>. Mitigating N<sub>2</sub>O emissions from soils has environmental benefits. Recent research indicates that biochar can serve as an “electron shuttle” to reduce N<sub>2</sub>O emissions from soils. Electron shuttle is defined as organic molecules capable of reversibly receiving and donating electrons. Thus, biochar is expected to facilitate stepwise reduction of denitrification products, reducing N<sub>2</sub>O to environmentally harmless N<sub>2</sub>. However, it remains uncertain whether biochar’s capacity to mitigate N<sub>2</sub>O can be enlarged by augmenting its function as an electron shuttle. Thus, this study prepared a biochar with enhanced electron shuttle potential by loading redox-active (Fe) onto biochar. The effectiveness of this biochar in mitigating soil N<sub>2</sub>O emissions was investigated by incorporating it into the soil. The results showed that Fe-loaded biochar significantly augmented its function as an electron shuttle and dramatically reduced soil N<sub>2</sub>O emissions by 92% compared to the original biochar. The degree of decrease in N<sub>2</sub>O emissions was strongly associated with both the electron shuttle capacity and the concentration of redox-active Fe in the biochar. Additionally, Fe-loaded biochar significantly decreased the N<sub>2</sub>O/(N<sub>2</sub>O + N<sub>2</sub>) emission ratio and increased the expression of the <i>nosZ-II</i> gene. Our findings suggest that redox-active Fe loading in biochar is an effective strategy to enhance its electron shuttle function. The augmented electron shuttle function of biochar can successfully facilitate N<sub>2</sub>O mitigation emission by promoting complete denitrification.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"294 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Castellano-Hinojosa, Jesús González-López, Caroline Tardivo, Brittney D. Monus, Jasmine de Freitas, Sarah L. Strauss, Ute Albrecht
{"title":"Trunk injection of oxytetracycline improves plant performance and alters the active bark and rhizosphere microbiomes in huanglongbing-affected citrus trees","authors":"Antonio Castellano-Hinojosa, Jesús González-López, Caroline Tardivo, Brittney D. Monus, Jasmine de Freitas, Sarah L. Strauss, Ute Albrecht","doi":"10.1007/s00374-024-01824-x","DOIUrl":"https://doi.org/10.1007/s00374-024-01824-x","url":null,"abstract":"<p>Trunk injection of antibiotics has re-emerged as a strategy to mitigate citrus huanglongbing (HLB), a devastating disease associated with the bacterium <i>Candidatus</i> Liberibacter asiaticus (CLas). Despite commercial adoption in Florida, no studies have examined how oxytetracycline (OTC) injection may impact active plant-associated microbial communities. We investigated the impact of OTC trunk injection on tree physiological parameters, HLB control, and the prokaryotic and eukaryotic microbiome of the active inner bark and rhizosphere in a commercial citrus orchard under HLB-endemic conditions. OTC injection significantly increased juice quality and fruit weight. OTC was detected in leaves, bark, and roots but concentrations varied with time and across plant tissues. OTC injection reduced the abundance and diversity of the active prokaryotic microbiome in the bark and rhizosphere during the first three months post-injection. Specific prokaryotic taxa were responsive to OTC injection and their relative abundances related to increased plant performance. This study shows that OTC injection can promote the recovery of tree physiological functions impacted by HLB while also maximizing the benefits from certain prokaryotes of the bark and rhizosphere microbiomes.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"21 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louise B. Sennett, Lindsay D. Brin, Claudia Goyer, Bernie J. Zebarth, David L. Burton
{"title":"Effects of soil water content at freezing, thaw temperature, and snowmelt infiltration on N2O emissions and denitrifier gene and transcript abundance during a single freeze-thaw event","authors":"Louise B. Sennett, Lindsay D. Brin, Claudia Goyer, Bernie J. Zebarth, David L. Burton","doi":"10.1007/s00374-024-01817-w","DOIUrl":"https://doi.org/10.1007/s00374-024-01817-w","url":null,"abstract":"<p>Climate change-related warming and increased precipitation may alter winter snow cover and thawing events, and therefore, may carry significant consequences for nitrous oxide (N<sub>2</sub>O) production pathways such as denitrification, and the abundance and expression of denitrifying microorganisms. We used a soil microcosm study to investigate the combined effect of soil thaw temperature, initial water filled pore space (WFPS) prior to soil freezing, and snowmelt infiltration simulated by the addition of water on N<sub>2</sub>O emission and denitrification rates, soil respiration rate, and the abundance and transcription of denitrifying (<i>nirK</i>, <i>nirS</i>, and <i>nosZ</i>) bacteria during a single freeze-thaw event. Soil respiration rate was primarily controlled by an increase in soil thaw temperature, whereas soil N<sub>2</sub>O emission and denitrification rates were generally greater in soils with a higher initial WFPS and soil thaw temperature. In contrast, snowmelt infiltration generally had a negligible effect on these rates, which may be related to pre-existing soil conditions that were already conducive to denitrification. Unexpectedly, the <i>nosZ</i> transcript/<i>nosZ</i> gene abundance ratio was lower in soils thawed at 8.0 °C compared to 1.5 °C; however, this may have resulted in a lower N<sub>2</sub>O reduction, thus explaining the greater levels of N<sub>2</sub>O emitted from soils thawed at 8.0 °C. Overall, this study demonstrated that increased N<sub>2</sub>O production during a single freeze-thaw event was primarily linked to antecedent conditions of high initial WFPS, soil thaw temperature, and a synergistic interplay between these two environmental parameters, and provides evidence that an increase in annual temperature and precipitation, along with the timing of precipitation, may further stimulate N<sub>2</sub>O production pathways.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"13 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cynthia Albracht, Marcel Dominik Solbach, Justus Hennecke, Leonardo Bassi, Geert Roelof van der Ploeg, Nico Eisenhauer, Alexandra Weigelt, François Buscot, Anna Heintz-Buschart
{"title":"Common soil history is more important than plant history for arbuscular mycorrhizal community assembly in an experimental grassland diversity gradient","authors":"Cynthia Albracht, Marcel Dominik Solbach, Justus Hennecke, Leonardo Bassi, Geert Roelof van der Ploeg, Nico Eisenhauer, Alexandra Weigelt, François Buscot, Anna Heintz-Buschart","doi":"10.1007/s00374-024-01821-0","DOIUrl":"https://doi.org/10.1007/s00374-024-01821-0","url":null,"abstract":"<p>The relationship between biodiversity and ecosystem functioning strengthens with ecosystem age. However, the interplay between the plant diversity - ecosystem functioning relationship and Glomeromycotinian arbuscular mycorrhizal fungi (AMF) community assembly has not yet been scrutinized in this context, despite AMF’s role in plant survival and niche exploration. We study the development of AMF communities by disentangling soil- and plant-driven effects from calendar year effects. Within a long-term grassland biodiversity experiment, the pre-existing plant communities of varying plant diversity were re-established as split plots with combinations of common plant and soil histories: split plots with neither common plant nor soil history, with only soil but no plant history, and with both common plant and soil history. We found that bulk soil AMF communities were primarily shaped by common soil history, and additional common plant history had little effect. Further, the steepness of AMF diversity and plant diversity relationship did not strengthen over time, but AMF community evenness increased with common history. Specialisation of AMF towards plant species was low throughout, giving no indication of AMF communities specialising or diversifying over time. The potential of bulk soil AMF as mediators of variation in plant and microbial biomass over time and hence as drivers of biodiversity and ecosystem relationships was low. Our results suggest that soil processes may be key for the build-up of plant community-specific mycorrhizal communities with likely feedback effects on ecosystem productivity, but the plant-available mycorrhizal pool in bulk soil itself does not explain the strengthening of biodiversity and ecosystem relationships over time.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"58 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-term effect of liquid organic fertilisation and application methods on N2, N2O and CO2 fluxes from a silt loam arable soil","authors":"Balázs Grosz, Stefan Burkart, Reinhard Well","doi":"10.1007/s00374-024-01814-z","DOIUrl":"https://doi.org/10.1007/s00374-024-01814-z","url":null,"abstract":"<p>The absence of N<sub>2</sub> flux measurements in liquid manure-amended soils has resulted in a poor understanding of the effect of manure application on gaseous N losses. The aim of this study was to quantify N<sub>2</sub>, N<sub>2</sub>O, CO<sub>2</sub>, N<sub>2</sub>O reduction to N<sub>2</sub>, depth distribution of moisture, water-extractable organic C, NO<sub>3</sub><sup>−</sup>, NH<sub>4</sub><sup>+</sup>, pH, and diffusivity in a laboratory incubation experiment with an arable silt-loam soil. To quantify N processes and gaseous fluxes, <sup>15</sup>N tracing was applied. An artificial livestock slurry-mixture was added to the soil in various treatments (control, surface or injected application; slurry-application rate: 42.9 kg N ha<sup>− 1</sup>; soil water content of either 40% or 60% water-filled pore space (WFPS)). The soil was incubated for 10 days. The depth distribution of the control parameters was measured twice during the experiment on days 5 and 10. The average increase in N<sub>2</sub> and N<sub>2</sub>O fluxes from denitrification was about 900% in slurry-amended soils. The highest N<sub>2</sub> and N<sub>2</sub>O fluxes from denitrification were measured in the slurry injection, 60% WFPS treatment (7.83 ± 3.50 and 11.22 ± 7.60 mg N m<sup>− 2</sup> d<sup>− 1</sup>, respectively). The hypothesis that injected slurry at a higher water content enhances denitrification was confirmed. This study provides important insights into the formation, spatial and temporal variation of the manure-soil hotspot and its impact on the denitrification process. The results will form part of a dataset to develop, improve and test manure application submodules of biogeochemical models and will help to understand in detail the effect of hotspots on N-cycling in manure-treated soils.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"56 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Eckei, Reinhard Well, Martin Maier, Amanda Matson, Klaus Dittert, Pauline Sophie Rummel
{"title":"Determining N2O and N2 fluxes in relation to winter wheat and sugar beet growth and development using the improved 15N gas flux method on the field scale","authors":"Jonas Eckei, Reinhard Well, Martin Maier, Amanda Matson, Klaus Dittert, Pauline Sophie Rummel","doi":"10.1007/s00374-024-01806-z","DOIUrl":"https://doi.org/10.1007/s00374-024-01806-z","url":null,"abstract":"<p>The objectives of this field trial were to collect reliable measurement data on N<sub>2</sub> emissions and N<sub>2</sub>O/(N<sub>2</sub>O + N<sub>2</sub>) ratios in typical German crops in relation to crop development and to provide a dataset to test and improve biogeochemical models. N<sub>2</sub>O and N<sub>2</sub> emissions in winter wheat (WW, <i>Triticum aestivum</i> L.) and sugar beet (SB, <i>Beta vulgaris</i> subsp. <i>vulgaris</i>) were measured using the improved <sup>15</sup>N gas flux method with helium–oxygen flushing (80:20) to reduce the atmospheric N<sub>2</sub> background to < 2%. To estimate total N<sub>2</sub>O and N<sub>2</sub> production in soil, production-diffusion modelling was applied. Soil samples were taken in regular intervals and analyzed for mineral N (NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup>) and water-extractable Corg content. In addition, we monitored soil moisture, crop development, plant N uptake, N transformation processes in soil, and N translocation to deeper soil layers. Our best estimates for cumulative N<sub>2</sub>O + N<sub>2</sub> losses were 860.4 ± 220.9 mg N m<sup>−2</sup> and 553.1 ± 96.3 mg N m<sup>−2</sup> over the experimental period of 189 and 161 days with total N<sub>2</sub>O/(N<sub>2</sub>O + N<sub>2</sub>) ratios of 0.12 and 0.15 for WW and SB, respectively. Growing plants affected all controlling factors of denitrification, and dynamics clearly differed between crop species. Overall, N<sub>2</sub>O and N<sub>2</sub> emissions were highest when plant N and water uptake were low, i.e., during early growth stages, ripening, and after harvest. We present the first dataset of a plot-scale field study employing the improved <sup>15</sup>N gas flux method over a growing season showing that drivers for N<sub>2</sub>O and N<sub>2</sub>O + N<sub>2</sub> fluxes differ between crop species and change throughout the growing season.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"46 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140346099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Hemkemeyer, Sanja A. Schwalb, Clara Berendonk, Stefan Geisen, Stefanie Heinze, Rainer Georg Joergensen, Rong Li, Peter Lövenich, Wu Xiong, Florian Wichern
{"title":"Potato yield and quality are linked to cover crop and soil microbiome, respectively","authors":"Michael Hemkemeyer, Sanja A. Schwalb, Clara Berendonk, Stefan Geisen, Stefanie Heinze, Rainer Georg Joergensen, Rong Li, Peter Lövenich, Wu Xiong, Florian Wichern","doi":"10.1007/s00374-024-01813-0","DOIUrl":"https://doi.org/10.1007/s00374-024-01813-0","url":null,"abstract":"<p>Crop-specific cultivation practices including crop rotation, cover cropping, and fertilisation are key measures for sustainable farming, for which soil microorganisms are important components. This study aims at identifying links between agronomic practices, potato yield and quality as well as soil microorganisms. We analysed the roles of cover crops and of the soil prokaryotic, fungal, and protistan communities in a long-term trial, differing in crop rotation, i.e. winter wheat or silage maize as pre-crop, presence and positioning of oil radish within the rotation, and fertilisation, i.e. mineral fertiliser, straw, manure, or slurry. Up to 16% higher yields were observed when oil radish grew directly before potatoes. Losses of potato quality due to infection with <i>Rhizoctonia solani</i>-induced diseases and common scab was 43–63% lower when wheat + oil radish was pre-crop under manure or straw + slurry fertilisation than for maize as pre-crop. This contrast was also reflected by 42% higher fungal abundance and differences in β-diversity of prokaryotes, fungi, and protists. Those amplicon sequence variants, which were found in the treatments with highest potato qualities and differed in their abundances from other treatments, belonged to Firmicutes (2.4% of the sequences) and Mortierellaceae (28%), which both comprise potential antagonists of phytopathogens. Among protists, Lobosa, especially <i>Copromyxa</i>, was 62% more abundant in the high potato quality plots compared to all others, suggesting that specific higher trophic organisms can improve crop performance. Our findings suggest that successful potato cultivation is related (1) to planting of oil radish before potatoes for increasing yield and (2) to fertilisation with manure or straw + slurry for enriching the microbiome with crop-beneficial taxa.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"6 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140346057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dihe Yang, Lu Tang, Jiaxin Chen, Yimeng Shi, Hao Zhou, Hong Gao, Jian Jin, Changhong Guo
{"title":"Strategy of endophytic bacterial communities in alfalfa roots for enhancing plant resilience to saline–alkali stress and its application","authors":"Dihe Yang, Lu Tang, Jiaxin Chen, Yimeng Shi, Hao Zhou, Hong Gao, Jian Jin, Changhong Guo","doi":"10.1007/s00374-024-01816-x","DOIUrl":"https://doi.org/10.1007/s00374-024-01816-x","url":null,"abstract":"<p>Soil salinization is an abiotic stress factor that can harm plant growth. Root endophytic bacteria may be associated with the resilience of plants to saline–alkaline stress. This study investigated the diversity, composition, and function of endophytic bacterial communities in alfalfa roots under saline–alkali stress, and screened a key bacterial strain associated with saline–alkali resistance. 16 S rRNA amplicon sequencing showed that high levels of saline alkalinity significantly reduced the diversity of endophytic bacterial communities and the relative abundance of beneficial bacterial taxa, such as Rhizobiales and <i>Pseudomonas</i>. Long durations of saline–alkali significantly decreased the abundance of predicted functional genes related to nitrogen metabolism in the alfalfa root endophytic bacterial community. Additionally, we isolated a key strain <i>Pseudomonas</i> with saline-alkali tolerance which could colonise roots and considerably improve physiological characteristics and plant growth. We found that colonization with <i>Pseudomonas</i> can considerably enhance plant resistance to saline-alkali stress and that the composition and function of the endophytic bacterial communities in roots likely contribute to plant tolerance to saline-alkali stress.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"122 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyrogenic organic matter decreases while fresh organic matter increases soil heterotrophic respiration through modifying microbial activity in a subtropical forest","authors":"","doi":"10.1007/s00374-024-01815-y","DOIUrl":"https://doi.org/10.1007/s00374-024-01815-y","url":null,"abstract":"<h3>Abstract</h3> <p>As the carbon (C) credit market evolves, incorporating organic matter into soils has emerged as a key strategy in C farming. Soil heterotrophic respiration (R<sub>H</sub>) plays a pivotal role in maintaining the C balance in terrestrial ecosystems, yet the contrasting impacts of fresh and pyrogenic organic matter applications on soil R<sub>H</sub>, and associated underlying mechanisms, have not been fully investigated. Through a 2-year field experiment, we investigated how applying maize straw and its derived biochar affect the physical, chemical, and microbial properties of soil in a subtropical Moso bamboo forest. Results showed that straw application increased soil R<sub>H</sub>, while biochar application suppressed it. Soil R<sub>H</sub> was correlated positively with β-glucosidase and cellobiohydrolase activities but negatively with RubisCO enzyme activity. Increased soil R<sub>H</sub> under straw application was linked to the increased β-glucosidase/cellobiohydrolase activities driven by elevated water-soluble organic C and O-alkyl C levels as well as <em>GH48</em> and <em>cbh</em>I gene abundances, and the decreased RubisCO enzyme activity caused by reduced <em>cbbL</em> gene abundance. Conversely, reduced soil R<sub>H</sub> under biochar application was linked to reductions in β-glucosidase and cellobiohydrolase activities induced by increased aromatic C and decreased <em>GH48</em> and <em>cbh</em>I gene levels, and increases in RubisCO enzyme activity driven by higher <em>cbbL</em> gene abundance. More importantly, changes in soil R<sub>H</sub> were clearly linked to microbial dynamics. Specifically, increases in the relative abundances of Alphaproteobacteria and Sordariomycetes and decreases in AD3 and Tremellomycetes contributed to the enhanced soil R<sub>H</sub> under straw application. With biochar application, the reverse effect occurred, ultimately contributing to the reduced soil R<sub>H</sub>. Our study demonstrates that maize straw application increases while biochar application decreases soil R<sub>H</sub> in the subtropical forest. These findings reveal that biochar reduced soil R<sub>H</sub> through changing microbial activity in subtropical forests, providing insight into complex dynamics of soil C cycling in response to diverse interventions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"33 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}