Root mucilage nitrogen for rhizosphere microorganisms under drought

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE
Meisam Nazari, Samuel Bickel, Yakov Kuzyakov, Nataliya Bilyera, Mohsen Zarebanadkouki, Birgit Wassermann, Michaela A. Dippold
{"title":"Root mucilage nitrogen for rhizosphere microorganisms under drought","authors":"Meisam Nazari, Samuel Bickel, Yakov Kuzyakov, Nataliya Bilyera, Mohsen Zarebanadkouki, Birgit Wassermann, Michaela A. Dippold","doi":"10.1007/s00374-024-01827-8","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen (N) is a crucial nutrient for the growth and activity of rhizosphere microorganisms, particularly during drought conditions. Plant root-secreted mucilage contains N that could potentially nourish rhizosphere microbial communities. However, there remains a significant gap in understanding mucilage N content, its source, and its utilization by microorganisms under drought stress. In this study, we investigated the impact of four maize varieties (DH02 and DH04 from Kenya, and Kentos and Keops from Germany) on the secretion rates of mucilage from aerial roots and explored the origin of mucilage N supporting microbial life in the rhizosphere. We found that DH02 exhibited a 96% higher mucilage secretion rate compared to Kentos, while Keops showed 114% and 89% higher secretion rates compared to Kentos and DH04, respectively. On average, the four maize varieties released 4 μg N per root tip per day, representing 2% of total mucilage secretion. Notably, the natural abundance of <sup>15</sup>N isotopes increased (higher δ<sup>15</sup>N signature) with mucilage N release. This indicates a potential dilution of the isotopic signal from biological fixation of atmospheric N by mucilage-inhabiting bacteria as mucilage secretion rates increase. We proposed a model linking mucilage secretion to a mixture of isotopic signatures and estimated that biological N fixation may contribute to 45 - 75% of mucilage N per root tip. The N content of mucilage from a single maize root tip can support a bacterial population ranging from 10<sup>7</sup> to 10<sup>10</sup> cells per day. In conclusion, mucilage serves as a significant N-rich resource for microbial communities in the rhizosphere during drought conditions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"10 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01827-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen (N) is a crucial nutrient for the growth and activity of rhizosphere microorganisms, particularly during drought conditions. Plant root-secreted mucilage contains N that could potentially nourish rhizosphere microbial communities. However, there remains a significant gap in understanding mucilage N content, its source, and its utilization by microorganisms under drought stress. In this study, we investigated the impact of four maize varieties (DH02 and DH04 from Kenya, and Kentos and Keops from Germany) on the secretion rates of mucilage from aerial roots and explored the origin of mucilage N supporting microbial life in the rhizosphere. We found that DH02 exhibited a 96% higher mucilage secretion rate compared to Kentos, while Keops showed 114% and 89% higher secretion rates compared to Kentos and DH04, respectively. On average, the four maize varieties released 4 μg N per root tip per day, representing 2% of total mucilage secretion. Notably, the natural abundance of 15N isotopes increased (higher δ15N signature) with mucilage N release. This indicates a potential dilution of the isotopic signal from biological fixation of atmospheric N by mucilage-inhabiting bacteria as mucilage secretion rates increase. We proposed a model linking mucilage secretion to a mixture of isotopic signatures and estimated that biological N fixation may contribute to 45 - 75% of mucilage N per root tip. The N content of mucilage from a single maize root tip can support a bacterial population ranging from 107 to 1010 cells per day. In conclusion, mucilage serves as a significant N-rich resource for microbial communities in the rhizosphere during drought conditions.

Abstract Image

干旱条件下根瘤微生物所需的根粘液氮
氮(N)是根瘤微生物生长和活动的重要养分,尤其是在干旱条件下。植物根部分泌的粘液含有氮,有可能滋养根圈微生物群落。然而,对干旱胁迫下粘液氮的含量、来源以及微生物对其的利用的了解仍然存在很大差距。在这项研究中,我们调查了四个玉米品种(肯尼亚的 DH02 和 DH04 以及德国的 Kentos 和 Keops)对气生根粘液分泌率的影响,并探索了支持根圈微生物生命的粘液 N 的来源。我们发现,DH02 的粘液分泌率比 Kentos 高 96%,而 Keops 的分泌率比 Kentos 和 DH04 分别高 114% 和 89%。这四个玉米品种平均每天每个根尖释放 4 微克氮,占粘液总分泌量的 2%。值得注意的是,15N 同位素的天然丰度随着粘液氮的释放而增加(δ15N 标志更高)。这表明,随着粘液分泌率的增加,栖息在粘液中的细菌对大气中氮的生物固定可能会稀释同位素信号。我们提出了一个将粘液分泌与混合同位素特征联系起来的模型,并估计生物氮固定可能占每个根尖粘液氮含量的 45% - 75%。单个玉米根尖粘液中的氮含量每天可支持 107 到 1010 个细胞的细菌种群。总之,在干旱条件下,粘液是根圈微生物群落的重要富氮资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信