{"title":"Soil contribution to the cobalamin (vitamin B12) supply of terrestrial organisms","authors":"Arne Matteo Jörgensen, Rainer Georg Joergensen","doi":"10.1007/s00374-024-01828-7","DOIUrl":null,"url":null,"abstract":"<p>Cobalamin (Vitamin B<sub>12</sub>) is a cofactor for many enzymes, including those in bacteria, archaea, algae, and mammals. In humans, cobalamin deficiency can lead to pernicious anaemia as well as gastrointestinal and neurological disorders. In contrast to marine ecosystems, there is a great paucity of information on the role of soils and terrestrial plants in the supply of cobalt and cobalamin to microorganisms and animals. The content of cobalt cations in most soils is usually sufficient to maintain growth, and the density of cobalamin-producing soil prokaryotes is high in comparison to water bodies. The cobalt content of most soils is usually sufficient in comparison with water, and the density of cobalamin-producing soil prokaryotes is high. Therefore, terrestrial plants are an important cobalt source for cobalamin-producing rumen and gut prokaryotes. The major source of cobalamin for most other animals is the meat of ruminants as well as other animal-derived products, bacteria in insects, and coprophagy, e.g., by rodents. In addition, faecal deposits, and fertilizers as well as soil bacteria add to the cobalamin supply. However, those archaea and bacteria that do not produce cobalamin obtain this coenzyme or its analogues from the environment. Therefore, presence or absence of cobalamin-producing species in soil affects the whole soil microbiome. However, our knowledge concerning microbial producers and consumers of cobalamin in soils is still limited, despite some recent advances. The main reasons are a low cobalamin content in soils and challenging methods of determination. In this regard, advanced analytical knowledge and technical equipment are required, which are usually unavailable in soil laboratories. This review provides relevant methodological information on sample homogenization, extraction, concentration, and purification as well as analysis of cobalamin.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"20 5 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01828-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cobalamin (Vitamin B12) is a cofactor for many enzymes, including those in bacteria, archaea, algae, and mammals. In humans, cobalamin deficiency can lead to pernicious anaemia as well as gastrointestinal and neurological disorders. In contrast to marine ecosystems, there is a great paucity of information on the role of soils and terrestrial plants in the supply of cobalt and cobalamin to microorganisms and animals. The content of cobalt cations in most soils is usually sufficient to maintain growth, and the density of cobalamin-producing soil prokaryotes is high in comparison to water bodies. The cobalt content of most soils is usually sufficient in comparison with water, and the density of cobalamin-producing soil prokaryotes is high. Therefore, terrestrial plants are an important cobalt source for cobalamin-producing rumen and gut prokaryotes. The major source of cobalamin for most other animals is the meat of ruminants as well as other animal-derived products, bacteria in insects, and coprophagy, e.g., by rodents. In addition, faecal deposits, and fertilizers as well as soil bacteria add to the cobalamin supply. However, those archaea and bacteria that do not produce cobalamin obtain this coenzyme or its analogues from the environment. Therefore, presence or absence of cobalamin-producing species in soil affects the whole soil microbiome. However, our knowledge concerning microbial producers and consumers of cobalamin in soils is still limited, despite some recent advances. The main reasons are a low cobalamin content in soils and challenging methods of determination. In this regard, advanced analytical knowledge and technical equipment are required, which are usually unavailable in soil laboratories. This review provides relevant methodological information on sample homogenization, extraction, concentration, and purification as well as analysis of cobalamin.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.