Lenir Fátima Gotz, Adila Natália França de Almeida, Rafael de Souza Nunes, Leo Murtagh Condron, Paulo Sergio Pavinato
{"title":"Assessment of phosphorus use and availability by contrasting crop plants in a tropical soil","authors":"Lenir Fátima Gotz, Adila Natália França de Almeida, Rafael de Souza Nunes, Leo Murtagh Condron, Paulo Sergio Pavinato","doi":"10.1007/s00374-024-01833-w","DOIUrl":null,"url":null,"abstract":"<p>Phosphorus (P) is a key element for energy transfer, and biosynthesis of nucleic acids and cell membranes. The objective of this study was to investigate and quantify P utilization by different grain—maize (<i>Zea mays</i> L.) and soybean (<i>Glycine max</i> L.)—and forage-cover crop brachiaria (<i>Brachiaria ruziziensis</i>) plant species in a low fertility highly weathered Oxisol. Two rates of P (25 and 50 mg kg<sup>−1</sup>) were applied by water-soluble P fertilizer (triple superphosphate) to each of 12 crop cycles, together with a control (no P added). Measurements included plant biomass production and P uptake for each cycle, and analysis of soil P fractions (including labile and non-labile) and enzymes activities (acid phosphatase and β-glucosidase) were done at the beginning of the experiment and after 3, 6, and 12 cycles. Total biomass production and P uptake/removal were significantly higher for brachiaria than maize and soybean, which was reflected in the P use efficiency (PUE), being higher for brachiaria (57%), compared with maize (26%) and soybean (21%). The higher PUE by brachiaria was partly attributed to higher levels of acid phosphatase and β-glucosidase activities which indicated enhanced biological activity and P cycling under brachiaria. Data from the control treatment clearly demonstrated that all three plant species mobilized stable/occluded fractions of P throughout the experiment, however, brachiaria could produce more using less P. The findings of this study indicated the inclusion of brachiaria in crop rotations as a forage or cover crop/green manure may enhance overall P use efficiency.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"44 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01833-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) is a key element for energy transfer, and biosynthesis of nucleic acids and cell membranes. The objective of this study was to investigate and quantify P utilization by different grain—maize (Zea mays L.) and soybean (Glycine max L.)—and forage-cover crop brachiaria (Brachiaria ruziziensis) plant species in a low fertility highly weathered Oxisol. Two rates of P (25 and 50 mg kg−1) were applied by water-soluble P fertilizer (triple superphosphate) to each of 12 crop cycles, together with a control (no P added). Measurements included plant biomass production and P uptake for each cycle, and analysis of soil P fractions (including labile and non-labile) and enzymes activities (acid phosphatase and β-glucosidase) were done at the beginning of the experiment and after 3, 6, and 12 cycles. Total biomass production and P uptake/removal were significantly higher for brachiaria than maize and soybean, which was reflected in the P use efficiency (PUE), being higher for brachiaria (57%), compared with maize (26%) and soybean (21%). The higher PUE by brachiaria was partly attributed to higher levels of acid phosphatase and β-glucosidase activities which indicated enhanced biological activity and P cycling under brachiaria. Data from the control treatment clearly demonstrated that all three plant species mobilized stable/occluded fractions of P throughout the experiment, however, brachiaria could produce more using less P. The findings of this study indicated the inclusion of brachiaria in crop rotations as a forage or cover crop/green manure may enhance overall P use efficiency.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.