Michael Dannenmann, Irina Yankelzon, Svenja Wähling, Elisabeth Ramm, Mirella Schreiber, Ulrike Ostler, Marcus Schlingmann, Claus Florian Stange, Ralf Kiese, Klaus Butterbach-Bahl, Johannes Friedl, Clemens Scheer
{"title":"Fates of slurry-nitrogen applied to mountain grasslands: the importance of dinitrogen emissions versus plant N uptake","authors":"Michael Dannenmann, Irina Yankelzon, Svenja Wähling, Elisabeth Ramm, Mirella Schreiber, Ulrike Ostler, Marcus Schlingmann, Claus Florian Stange, Ralf Kiese, Klaus Butterbach-Bahl, Johannes Friedl, Clemens Scheer","doi":"10.1007/s00374-024-01826-9","DOIUrl":"https://doi.org/10.1007/s00374-024-01826-9","url":null,"abstract":"<p>Intensive fertilization of grasslands with cattle slurry can cause high environmental nitrogen (N) losses in form of ammonia (NH<sub>3</sub>), nitrous oxide (N<sub>2</sub>O), and nitrate (NO<sub>3</sub><sup>−</sup>) leaching. Still, knowledge on short-term fertilizer N partitioning between plants and dinitrogen (N<sub>2</sub>) emissions is lacking. Therefore, we applied highly <sup>15</sup>N-enriched cattle slurry (97 kg N ha<sup>−1</sup>) to pre-alpine grassland field mesocosms. We traced the slurry <sup>15</sup>N in the plant-soil system and to denitrification losses (N<sub>2</sub>, N<sub>2</sub>O) over 29 days in high temporal resolution. Gaseous ammonia (NH<sub>3</sub>), N<sub>2</sub> as well N<sub>2</sub>O losses at about 20 kg N ha<sup>−1</sup> were observed only within the first 3 days after fertilization and were dominated by NH<sub>3</sub>. Nitrous oxide emissions (0.1 kg N ha<sup>−1</sup>) were negligible, while N<sub>2</sub> emissions accounted for 3 kg of fertilizer N ha<sup>−1</sup>. The relatively low denitrification losses can be explained by the rapid plant uptake of fertilizer N, particularly from 0–4 cm depth, with plant N uptake exceeding denitrification N losses by an order of magnitude already after 3 days. After 17 days, total aboveground plant N uptake reached 100 kg N ha<sup>−1</sup>, with 33% of N derived from the applied N fertilizer. Half of the fertilizer N was found in above and belowground biomass, while at about 25% was recovered in the soil and 25% was lost, mainly in form of gaseous emissions, with minor N leaching. Overall, this study shows that plant N uptake plays a dominant role in controlling denitrification losses at high N application rates in pre-alpine grassland soils.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"121 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soil contribution to the cobalamin (vitamin B12) supply of terrestrial organisms","authors":"Arne Matteo Jörgensen, Rainer Georg Joergensen","doi":"10.1007/s00374-024-01828-7","DOIUrl":"https://doi.org/10.1007/s00374-024-01828-7","url":null,"abstract":"<p>Cobalamin (Vitamin B<sub>12</sub>) is a cofactor for many enzymes, including those in bacteria, archaea, algae, and mammals. In humans, cobalamin deficiency can lead to pernicious anaemia as well as gastrointestinal and neurological disorders. In contrast to marine ecosystems, there is a great paucity of information on the role of soils and terrestrial plants in the supply of cobalt and cobalamin to microorganisms and animals. The content of cobalt cations in most soils is usually sufficient to maintain growth, and the density of cobalamin-producing soil prokaryotes is high in comparison to water bodies. The cobalt content of most soils is usually sufficient in comparison with water, and the density of cobalamin-producing soil prokaryotes is high. Therefore, terrestrial plants are an important cobalt source for cobalamin-producing rumen and gut prokaryotes. The major source of cobalamin for most other animals is the meat of ruminants as well as other animal-derived products, bacteria in insects, and coprophagy, e.g., by rodents. In addition, faecal deposits, and fertilizers as well as soil bacteria add to the cobalamin supply. However, those archaea and bacteria that do not produce cobalamin obtain this coenzyme or its analogues from the environment. Therefore, presence or absence of cobalamin-producing species in soil affects the whole soil microbiome. However, our knowledge concerning microbial producers and consumers of cobalamin in soils is still limited, despite some recent advances. The main reasons are a low cobalamin content in soils and challenging methods of determination. In this regard, advanced analytical knowledge and technical equipment are required, which are usually unavailable in soil laboratories. This review provides relevant methodological information on sample homogenization, extraction, concentration, and purification as well as analysis of cobalamin.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"20 5 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meisam Nazari, Samuel Bickel, Yakov Kuzyakov, Nataliya Bilyera, Mohsen Zarebanadkouki, Birgit Wassermann, Michaela A. Dippold
{"title":"Root mucilage nitrogen for rhizosphere microorganisms under drought","authors":"Meisam Nazari, Samuel Bickel, Yakov Kuzyakov, Nataliya Bilyera, Mohsen Zarebanadkouki, Birgit Wassermann, Michaela A. Dippold","doi":"10.1007/s00374-024-01827-8","DOIUrl":"https://doi.org/10.1007/s00374-024-01827-8","url":null,"abstract":"<p>Nitrogen (N) is a crucial nutrient for the growth and activity of rhizosphere microorganisms, particularly during drought conditions. Plant root-secreted mucilage contains N that could potentially nourish rhizosphere microbial communities. However, there remains a significant gap in understanding mucilage N content, its source, and its utilization by microorganisms under drought stress. In this study, we investigated the impact of four maize varieties (DH02 and DH04 from Kenya, and Kentos and Keops from Germany) on the secretion rates of mucilage from aerial roots and explored the origin of mucilage N supporting microbial life in the rhizosphere. We found that DH02 exhibited a 96% higher mucilage secretion rate compared to Kentos, while Keops showed 114% and 89% higher secretion rates compared to Kentos and DH04, respectively. On average, the four maize varieties released 4 μg N per root tip per day, representing 2% of total mucilage secretion. Notably, the natural abundance of <sup>15</sup>N isotopes increased (higher δ<sup>15</sup>N signature) with mucilage N release. This indicates a potential dilution of the isotopic signal from biological fixation of atmospheric N by mucilage-inhabiting bacteria as mucilage secretion rates increase. We proposed a model linking mucilage secretion to a mixture of isotopic signatures and estimated that biological N fixation may contribute to 45 - 75% of mucilage N per root tip. The N content of mucilage from a single maize root tip can support a bacterial population ranging from 10<sup>7</sup> to 10<sup>10</sup> cells per day. In conclusion, mucilage serves as a significant N-rich resource for microbial communities in the rhizosphere during drought conditions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"10 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring polyphosphates in soil: presence, extractability, and contribution to microbial biomass phosphorus","authors":"Petr Čapek, Adéla Tupá, Michal Choma","doi":"10.1007/s00374-024-01829-6","DOIUrl":"https://doi.org/10.1007/s00374-024-01829-6","url":null,"abstract":"<p>Polyphosphates (Poly-P) are known to fulfil several important physiological functions. Many microorganisms can accumulate large amounts of Poly-P in their biomass. Regardless of these facts, systematic research on Poly-P in soil is missing, probably due to the absence of any method of direct Poly-P quantification. In this study, we attempted to unequivocally prove the presence of Poly-P in the biomass of soil microorganisms and quantify their extractability and contribution to microbial biomass phosphorus. To do so, we combined several approaches that can indicate Poly-P presence in soil microbial biomass indirectly, i.e. growth of soil inoculum on media without phosphorus, associated with measurement of changes in the microbial biomass stoichiometry, and the colour of the microbial suspension stained by the Neisser method. All soil microbial communities exhibited growth on media without phosphorus. As the growth on this media depleted Poly-P content, the biomass carbon to phosphorus and nitrogen to phosphorus ratio increased and the colour of the microbial suspension stained by the Neisser method changed predictively. The associated Poly-P addition experiment indicated that the recovery of added Poly-P from soil in form of soluble reactive phosphorus in sodium bicarbonate extract may reach up to 93% mainly due to abiotic depolymerization. Using a simple stoichiometric model applied to measured data, we calculated that the Poly-P content of microbial biomass in our soils may be up to 45 or 70% of total microbial biomass phosphorus depending on the assumptions applied regarding parameter values. We discuss the magnitude of error associated with the measurement of soil microbial phosphorus due to the high extractability of Poly-P.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"08 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inoculation and tracking of beneficial microbes reveal they can establish in field-grown potato roots and decrease blemish diseases","authors":"Geoffrey Darbon, Stéphane Declerck, Gaétan Riot, Marcé Doubell, Brice Dupuis","doi":"10.1007/s00374-024-01822-z","DOIUrl":"https://doi.org/10.1007/s00374-024-01822-z","url":null,"abstract":"<p>In a three-year field study, we inoculated two potato varieties with a selection of four beneficial microbial strains (i.e. <i>Rhizophagus irregularis</i> MUCL41833, <i>Trichoderma asperelloides</i> A, <i>Pseudomonas brassicacearum</i> 3Re2-7 and <i>Paraburkholderia phytofirmans</i> PsJN), alone or in combination. Plants were grown under rainfed or irrigated conditions, and potato yield and development of several diseases were evaluated. The microbial inoculants were traced in the root system at different stages of crop development via molecular markers. Whatever the water supply, the inoculants had no effect on yield. Conversely, some of the inoculants were able to lower the incidence and/or severity of several blemish diseases, namely common scab-associated symptoms (CSAS) and silver scurf/black dot-associated symptoms (SSAS). Microbial consortia were more efficient in decreasing symptoms compared to single strain inoculations. The best control was obtained with the combination of <i>R. irregularis</i> and <i>P. brassicacearum</i>, which reduced the incidence of CSAS by 22% and severity of SSAS by 21%. Root tracking revealed that <i>P. brassicacearum</i> and <i>P. phytofirmans</i> PsJN were able to establish in the root system of the potato, while only <i>P. brassicacearum</i> was detected from emergence until flowering of the plants.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"51 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metagenomic data highlight shifted nitrogen regime induced by wetland reclamation","authors":"Kexin Li, Nannan Wang, Fenghui Yuan, Xinhao Zhu, Yunjiang Zuo, Jianzhao Liu, Ziyu Guo, Ying Sun, Rui Su, Lihua Zhang, Sergei Lupakov, Yanyu Song, Changchun Song, Xiaofeng Xu","doi":"10.1007/s00374-024-01820-1","DOIUrl":"https://doi.org/10.1007/s00374-024-01820-1","url":null,"abstract":"<p>Natural wetlands are mostly nitrogen-limited ecosystems, while reclamation stimulates the loss of nitrogen (N) in soils by shifting the N regime. To investigate the microbial mechanisms of the N regime shift, we first conducted a global meta-analysis to quantify the wetland reclamation impacts on soil mineral N pools and then a field campaign to sample 24 soil cores up to 100 cm depth in a natural wetland and a 23-year cultivated soybean field from the Sanjiang Plain in northeastern China. After wetland reclamation, the N regime was shifted to cause a potential risk of massive N loss in soils; their microbial mechanisms were revealed through metagenomic data. In cropland, the relative abundance of genes involved in nitrification and assimilatory nitrate reduction to ammonia (ANRA) were enriched while those in N fixation, mineralization, denitrification, and dissimilatory nitrate reduction to ammonia (DNRA) were diminished. Wetland reclamation substantially enhanced the relative abundance of genes involved in nitrification (except for genes for ammonia oxidation to NH<sub>2</sub>OH) and denitrification in surface (0–30 cm) soils but decreased them in subsurface (30–100 cm) soils. After wetland reclamation, the relative abundance of genes involved in denitrification and DNRA significantly reduced in spring and summer, but such patterns were not found in autumn and winter. This change enhanced potential microbial-driven N loss in spring and summer. The metagenomic data serve as surrogate data sources for quantifying soil roles on soil N cycles under land use change.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"1 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa Pfülb, Lars Elsgaard, Peter Dörsch, Roland Fuß, Reinhard Well
{"title":"Impact of liming and maize residues on N2O and N2 fluxes in agricultural soils: an incubation study","authors":"Lisa Pfülb, Lars Elsgaard, Peter Dörsch, Roland Fuß, Reinhard Well","doi":"10.1007/s00374-024-01825-w","DOIUrl":"https://doi.org/10.1007/s00374-024-01825-w","url":null,"abstract":"<p>Since it is known that nitrous oxide (N<sub>2</sub>O) production and consumption pathways are affected by soil pH, optimising the pH of agricultural soils can be an important approach to reduce N<sub>2</sub>O emissions. Because liming effects on N<sub>2</sub>O reduction had not been studied under ambient atmosphere and typical bulk density of arable soils, we conducted mesoscale incubation experiments with soils from two liming trials to investigate the impact of long-term pH management and fresh liming on N transformations and N<sub>2</sub>O production. Soils differed in texture and covered a range of pH levels (3.8–6.7), consisting of non-limed controls, long-term field-limed calcite and dolomite treatments, and freshly limed soils. Both soils were amended with <sup>15</sup>N-labelled potassium nitrate (KNO<sub>3</sub>) and incubated with and without incorporated maize litter. Packed soil mesocosms were cycled through four phases of alternating temperatures and soil moistures for at least 40 days. Emissions of N<sub>2</sub>O and dinitrogen (N<sub>2</sub>) as well as the product ratio of denitrification N<sub>2</sub>O/(N<sub>2</sub>O + N<sub>2</sub>), referred to as N<sub>2</sub>Oi were measured with the <sup>15</sup>N gas flux method in N<sub>2</sub>-reduced atmosphere. Emissions of N<sub>2</sub>O increased in response to typical denitrifying conditions (high moisture and presence of litter). Increased temperature and soil moisture stimulated microbial activity and triggered denitrification as judged from <sup>15</sup>NO<sub>3</sub><sup>−</sup> pool derived N<sub>2</sub>O + N<sub>2</sub> emissions. Fresh liming increased denitrification in the sandy soil up to 3-fold but reduced denitrification in the loamy soil by 80%. N<sub>2</sub>Oi decreased throughout the incubation in response to fresh liming from 0.5–0.8 to 0.3–0.4, while field-limed soils had smaller N<sub>2</sub>Oi (0.1–0.3) than unlimed controls (0.9) irrespective of incubation conditions. Our study shows that the denitrification response (i.e., N<sub>2</sub>O + N<sub>2</sub> production) to liming is soil dependent, whereas liming effects on N<sub>2</sub>Oi are consistent for both long- and short-term pH management. This extends previous results from anoxic slurry incubation studies by showing that soil pH management by liming has a good mitigation potential for agricultural N<sub>2</sub>O emissions from denitrification under wet conditions outside of cropping season.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"2 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steffen Schlüter, Maik Lucas, Balazs Grosz, Olaf Ippisch, Jan Zawallich, Hongxing He, Rene Dechow, David Kraus, Sergey Blagodatsky, Mehmet Senbayram, Alexandra Kravchenko, Hans-Jörg Vogel, Reinhard Well
{"title":"The anaerobic soil volume as a controlling factor of denitrification: a review","authors":"Steffen Schlüter, Maik Lucas, Balazs Grosz, Olaf Ippisch, Jan Zawallich, Hongxing He, Rene Dechow, David Kraus, Sergey Blagodatsky, Mehmet Senbayram, Alexandra Kravchenko, Hans-Jörg Vogel, Reinhard Well","doi":"10.1007/s00374-024-01819-8","DOIUrl":"https://doi.org/10.1007/s00374-024-01819-8","url":null,"abstract":"<p>Denitrification is an important component of the nitrogen cycle in soil, returning reactive nitrogen to the atmosphere. Denitrification activity is often concentrated spatially in anoxic microsites and temporally in ephemeral events, which presents a challenge for modelling. The anaerobic fraction of soil volume can be a useful predictor of denitrification in soils. Here, we provide a review of this soil characteristic, its controlling factors, its estimation from basic soil properties and its implementation in current denitrification models. The concept of the anaerobic soil volume and its relationship to denitrification activity has undergone several paradigm shifts that came along with the advent of new oxygen and microstructure mapping techniques. The current understanding is that hotspots of denitrification activity are partially decoupled from air distances in the wet soil matrix and are mainly associated with particulate organic matter (POM) in the form of fresh plant residues or manure. POM fragments harbor large amounts of labile carbon that promote local oxygen consumption and, as a result, these microsites differ in their aeration status from the surrounding soil matrix. Current denitrification models relate the anaerobic soil volume fraction to bulk oxygen concentration in various ways but make little use of microstructure information, such as the distance between POM and air-filled pores. Based on meta-analyses, we derive new empirical relationships to estimate the conditions for the formation of anoxia at the microscale from basic soil properties and we outline how these empirical relationships could be used in the future to improve prediction accuracy of denitrification models at the soil profile scale.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"100 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Yuan, Ping Wu, Jiao Yuan, Zhifen Jia, Chunsheng Hu, Tim J. Clough, Nicole Wrage-Mönnig, Jiafa Luo, Jiahuan Tang, Shuping Qin
{"title":"Loading of redox-active metal Fe largely enhances the capacity of biochar to mitigate soil N2O emissions by promoting complete denitrification","authors":"Dan Yuan, Ping Wu, Jiao Yuan, Zhifen Jia, Chunsheng Hu, Tim J. Clough, Nicole Wrage-Mönnig, Jiafa Luo, Jiahuan Tang, Shuping Qin","doi":"10.1007/s00374-024-01823-y","DOIUrl":"https://doi.org/10.1007/s00374-024-01823-y","url":null,"abstract":"<p>Nitrous oxide (N<sub>2</sub>O) is a critical greenhouse gas and an ozone-depleting substance, with a global warming potential 298–310 times greater than that of CO<sub>2</sub>. Mitigating N<sub>2</sub>O emissions from soils has environmental benefits. Recent research indicates that biochar can serve as an “electron shuttle” to reduce N<sub>2</sub>O emissions from soils. Electron shuttle is defined as organic molecules capable of reversibly receiving and donating electrons. Thus, biochar is expected to facilitate stepwise reduction of denitrification products, reducing N<sub>2</sub>O to environmentally harmless N<sub>2</sub>. However, it remains uncertain whether biochar’s capacity to mitigate N<sub>2</sub>O can be enlarged by augmenting its function as an electron shuttle. Thus, this study prepared a biochar with enhanced electron shuttle potential by loading redox-active (Fe) onto biochar. The effectiveness of this biochar in mitigating soil N<sub>2</sub>O emissions was investigated by incorporating it into the soil. The results showed that Fe-loaded biochar significantly augmented its function as an electron shuttle and dramatically reduced soil N<sub>2</sub>O emissions by 92% compared to the original biochar. The degree of decrease in N<sub>2</sub>O emissions was strongly associated with both the electron shuttle capacity and the concentration of redox-active Fe in the biochar. Additionally, Fe-loaded biochar significantly decreased the N<sub>2</sub>O/(N<sub>2</sub>O + N<sub>2</sub>) emission ratio and increased the expression of the <i>nosZ-II</i> gene. Our findings suggest that redox-active Fe loading in biochar is an effective strategy to enhance its electron shuttle function. The augmented electron shuttle function of biochar can successfully facilitate N<sub>2</sub>O mitigation emission by promoting complete denitrification.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"294 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Castellano-Hinojosa, Jesús González-López, Caroline Tardivo, Brittney D. Monus, Jasmine de Freitas, Sarah L. Strauss, Ute Albrecht
{"title":"Trunk injection of oxytetracycline improves plant performance and alters the active bark and rhizosphere microbiomes in huanglongbing-affected citrus trees","authors":"Antonio Castellano-Hinojosa, Jesús González-López, Caroline Tardivo, Brittney D. Monus, Jasmine de Freitas, Sarah L. Strauss, Ute Albrecht","doi":"10.1007/s00374-024-01824-x","DOIUrl":"https://doi.org/10.1007/s00374-024-01824-x","url":null,"abstract":"<p>Trunk injection of antibiotics has re-emerged as a strategy to mitigate citrus huanglongbing (HLB), a devastating disease associated with the bacterium <i>Candidatus</i> Liberibacter asiaticus (CLas). Despite commercial adoption in Florida, no studies have examined how oxytetracycline (OTC) injection may impact active plant-associated microbial communities. We investigated the impact of OTC trunk injection on tree physiological parameters, HLB control, and the prokaryotic and eukaryotic microbiome of the active inner bark and rhizosphere in a commercial citrus orchard under HLB-endemic conditions. OTC injection significantly increased juice quality and fruit weight. OTC was detected in leaves, bark, and roots but concentrations varied with time and across plant tissues. OTC injection reduced the abundance and diversity of the active prokaryotic microbiome in the bark and rhizosphere during the first three months post-injection. Specific prokaryotic taxa were responsive to OTC injection and their relative abundances related to increased plant performance. This study shows that OTC injection can promote the recovery of tree physiological functions impacted by HLB while also maximizing the benefits from certain prokaryotes of the bark and rhizosphere microbiomes.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"21 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}