Pore confinement enhances but surface adhesion reduces bacterial cell-to-cell conjugation

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE
Huihui Sun, Mark Radosevich, Yanchen Sun, Larry Millet, Shuo Qian, Jie Zhuang
{"title":"Pore confinement enhances but surface adhesion reduces bacterial cell-to-cell conjugation","authors":"Huihui Sun, Mark Radosevich, Yanchen Sun, Larry Millet, Shuo Qian, Jie Zhuang","doi":"10.1007/s00374-024-01841-w","DOIUrl":null,"url":null,"abstract":"<p>As the habitats of bacteria, soil pore network and surface properties control the distribution, adhesion, and motility of bacteria in soils. These physical processes in turn influence bacterial accesses to nutrients and bacterial interactions. Our understanding on the pore- and surface-mediated bacterial interactions is currently limited. In this research, we evaluated the effects of soil pore confinement and surface adhesion on conjugation-based bacterial interactions. The interaction was measured by plasmid transfer between donor and recipient cells within the population of soil bacterium <i>Pseudomonas putida</i>. We found that the presence of porous sand media led to a net increase in conjugation frequency compared to sand-free liquid control. The increase is attributed to the facilitated effect of pore confinement on the collision of bacteria within pores. In contrast, bacterial adhesion to sand surfaces under elevated ionic strength conditions decreased the conjugation frequency as a result of mobility reduction on the surface. Such collision and adhesion mechanisms jointly drive the conjugation as a function of pore and surface properties of porous media. These results provide valuable insights into the roles of soil pores and surfaces in regulating horizontal gene transfer, an essential cell-to-cell interaction sustaining key processes of soil ecology and health.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01841-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As the habitats of bacteria, soil pore network and surface properties control the distribution, adhesion, and motility of bacteria in soils. These physical processes in turn influence bacterial accesses to nutrients and bacterial interactions. Our understanding on the pore- and surface-mediated bacterial interactions is currently limited. In this research, we evaluated the effects of soil pore confinement and surface adhesion on conjugation-based bacterial interactions. The interaction was measured by plasmid transfer between donor and recipient cells within the population of soil bacterium Pseudomonas putida. We found that the presence of porous sand media led to a net increase in conjugation frequency compared to sand-free liquid control. The increase is attributed to the facilitated effect of pore confinement on the collision of bacteria within pores. In contrast, bacterial adhesion to sand surfaces under elevated ionic strength conditions decreased the conjugation frequency as a result of mobility reduction on the surface. Such collision and adhesion mechanisms jointly drive the conjugation as a function of pore and surface properties of porous media. These results provide valuable insights into the roles of soil pores and surfaces in regulating horizontal gene transfer, an essential cell-to-cell interaction sustaining key processes of soil ecology and health.

Abstract Image

孔隙限制增强了细菌细胞间的结合,但表面粘附减少了细菌细胞间的结合
作为细菌的栖息地,土壤孔隙网络和表面特性控制着细菌在土壤中的分布、粘附和运动。这些物理过程反过来又会影响细菌对营养物质的获取和细菌之间的相互作用。目前,我们对孔隙和表面介导的细菌相互作用的了解还很有限。在这项研究中,我们评估了土壤孔隙限制和表面附着力对基于共轭的细菌相互作用的影响。这种相互作用是通过土壤假单胞菌群体中供体细胞和受体细胞之间的质粒转移来测量的。我们发现,与无砂液体对照组相比,多孔砂介质的存在会导致共轭频率的净增加。这种增加归因于孔隙封闭对细菌在孔隙内碰撞的促进作用。相反,在离子强度升高的条件下,细菌粘附到沙子表面会降低共轭频率,因为表面的流动性降低了。这种碰撞和粘附机制共同驱动了多孔介质孔隙和表面特性的共轭作用。这些结果为了解土壤孔隙和表面在调节水平基因转移中的作用提供了宝贵的见解,水平基因转移是维持土壤生态和健康关键过程的一种重要的细胞间相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信