Bioscience, Biotechnology, and Biochemistry最新文献

筛选
英文 中文
Lipid metabolism and food ingredients from the perspective of thermogenic adipocytes. 从生热脂肪细胞的角度看脂质代谢和食品成分。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-24 DOI: 10.1093/bbb/zbae162
Mai Takada, Satoko Kawarasaki, Jungin Kwon, Zheng Ni, Haruya Takahashi, Kazuo Inoue, Tsuyoshi Goto
{"title":"Lipid metabolism and food ingredients from the perspective of thermogenic adipocytes.","authors":"Mai Takada, Satoko Kawarasaki, Jungin Kwon, Zheng Ni, Haruya Takahashi, Kazuo Inoue, Tsuyoshi Goto","doi":"10.1093/bbb/zbae162","DOIUrl":"10.1093/bbb/zbae162","url":null,"abstract":"<p><p>The high heat-producing capacity of brown and beige adipocytes, collectively known as thermogenic adipocytes, contributes to whole-body energy expenditure and is an attractive target for the management of obesity. It has been revealed that the functions of thermogenic adipocytes are important for the regulation of whole-body carbohydrate and lipid metabolism, and the activation of thermogenic adipocytes seems to have beneficial effects for the management of obesity-related metabolic disorders, such as dyslipidemia. Recent studies have showed that specific food ingredients have the potential to activate thermogenic adipocytes via various mechanisms. Some of these are effective not only in rodents, but also in humans, and effective prevention of obesity using these food ingredients is expected. In this review, we introduce the recent findings on the regulatory mechanisms of lipid metabolism by thermogenic adipocytes and food ingredients, demonstrating the potential to activate thermogenic adipocytes and their underlying mechanisms.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"193-200"},"PeriodicalIF":1.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNA mediates the effects of food factors. 微小核糖核酸介导食物因素的影响。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-24 DOI: 10.1093/bbb/zbae152
Motofumi Kumazoe, Hirofumi Tachibana
{"title":"MicroRNA mediates the effects of food factors.","authors":"Motofumi Kumazoe, Hirofumi Tachibana","doi":"10.1093/bbb/zbae152","DOIUrl":"10.1093/bbb/zbae152","url":null,"abstract":"<p><p>Food factors elicit physiological effects by interfering with the central dogma system, including DNA methylation, replication, transcription, and translation. MicroRNAs (miRNAs) are noncoding short RNAs that are ∼20 nucleotides long and play a crucial role in the regulation of mRNA levels and translation processes. Importantly, miRNAs can be delivered to different locations in nanovesicles. However, little is known about their roles as mediators of the effects of food factors. This review introduces recent findings on the role of miRNAs in the beneficial effects of food factors, including green tea polyphenols and soybean isoflavones, and discusses the importance of miRNAs as mediators of the beneficial effects of food.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"174-178"},"PeriodicalIF":1.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenge of validation in whole-cell spike-in amplicon sequencing to comprehensively quantify food lactic acid bacteriota. 全细胞尖峰扩增片段测序在全面量化食品乳酸菌群方面面临的验证挑战。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-24 DOI: 10.1093/bbb/zbae173
Mugihito Oshiro, Keisuke Nakamura, Yukihiro Tashiro
{"title":"Challenge of validation in whole-cell spike-in amplicon sequencing to comprehensively quantify food lactic acid bacteriota.","authors":"Mugihito Oshiro, Keisuke Nakamura, Yukihiro Tashiro","doi":"10.1093/bbb/zbae173","DOIUrl":"10.1093/bbb/zbae173","url":null,"abstract":"<p><p>Lactic acid bacteria (LAB) shape diverse communities in fermented foods. Developing comprehensive quantification methods for community structure will revolutionize our understanding of food LAB microbiome. For this purpose, 16S rRNA gene amplicon-based quantification, using spiked exogenous bacterial cells as an internal standard, shows potential for comprehensiveness and accuracy. We validated cell spike-in amplicon sequencing for quantifying LAB communities in food. Low efficiency of LAB DNA extraction underscores the importance of compensating for DNA loss by spiking internal standard cells. Quantitative equations generated using 15 selected LAB mock species showed positive relationships between the ratio of MiSeq read counts and the expected 16S rRNA gene copy numbers, with coefficients of determination (R2) ≥ 0.6823. The fold differences between observed and expected 16S copy numbers were within the range of 1/3 to 3-fold. Our validation highlights that accurate preparation of the LAB mock community is crucial for cell spike-in amplicon sequencing accuracy.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"294-303"},"PeriodicalIF":1.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene cloning and characterization of N-carbamyl-l-glutamic acid amidohydrolase involved in ergothioneine utilization in Burkholderia sp. HME13. 伯克霍尔德氏菌利用麦角硫因的n -氨基甲酰-l-谷氨酸氨基水解酶基因克隆及特性研究
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-24 DOI: 10.1093/bbb/zbae180
Hisashi Muramatsu, Masaaki Yamada, Hiroki Maguchi, Shin-Ichiro Kato
{"title":"Gene cloning and characterization of N-carbamyl-l-glutamic acid amidohydrolase involved in ergothioneine utilization in Burkholderia sp. HME13.","authors":"Hisashi Muramatsu, Masaaki Yamada, Hiroki Maguchi, Shin-Ichiro Kato","doi":"10.1093/bbb/zbae180","DOIUrl":"10.1093/bbb/zbae180","url":null,"abstract":"<p><p>Burkholderia sp. HME13 utilizes ergothioneine, a strong antioxidant, as the nitrogen source. We have previously shown that ergothionase, thiourocanate hydratase, 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase, and hydantoin-5-propionic acid amidohydrolase may be involved in ergothioneine utilization in this strain. In this study, we identified the ertE gene in Burkholderia sp. HME13, which encodes a bivalent metal-dependent N-carbamyl-l-glutamic acid amidohydrolase (ErtE). ErtE showed maximum activity at 60 °C and pH 7.0 and was stable at temperatures up to 55 °C and pH 6.5-8.0. The Km and Vmax values of ErtE for N-carbamyl-l-glutamic acid were 0.74 m m and 140 U/mg, respectively. Ethylenediaminetetraacetic acid-treated ErtE showed no enzymatic activity, which was restored upon the addition of Co2+, Mn2+, Ni2+, and Fe2+. Expression analyses and enzymatic assays suggested that ErtE is involved in ergothioneine utilization in this strain. Finally, we propose a mechanism for ergothioneine utilization in Burkholderia sp. HME13.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"255-262"},"PeriodicalIF":1.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Looking back at the achievements of functional food science in Japan. 回顾日本功能食品科学的成就。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-24 DOI: 10.1093/bbb/zbae134
Akira Murakami
{"title":"Looking back at the achievements of functional food science in Japan.","authors":"Akira Murakami","doi":"10.1093/bbb/zbae134","DOIUrl":"10.1093/bbb/zbae134","url":null,"abstract":"<p><p>Functional food science in Japan actively began approximately 40 years ago in the form of specific research projects funded by Grants-in-Aids for Scientific Research from the Ministry of Education, Science and Culture. Then, a new category of healthy food, that is \"Food for Specified Health Use\" (FOSHU), was established. Toshihiko Osawa organized and held the First International Conference on Food Factors in Hamamatsu, Japan, in 1995. As examples of key achievements in basic science, the chemical identification of numerous active principles in foods, elucidation of their metabolism pathways, and mechanistic findings using \"omics\" technologies and the discovery of target molecules are remarkable. However, whether FOSHU truly contributes to public health is still unknown. In this minireview, the author looks back on functional food science in Japan to date and, at the same time, describes the prospects to share a vision of the future in the next 10 years.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"147-151"},"PeriodicalIF":1.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosae Multiflorae Fructus Extracts Regulate the Differentiation and Vascular Endothelial Cell-mediated Proliferation of Keratinocytes.
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-23 DOI: 10.1093/bbb/zbaf007
Sae Asayama, Tami Igarashi, Yosihimi Abe, Ayaka Iwasaki, Mizuki Kubo, Ayaka Ikeda, Kouki Akiyama, Tadashi Okamoto, Masayuki Yagi, Yoko Niki, Hideya Ando, Masamitsu Ichihashi, Ken-Ichi Mizutani
{"title":"Rosae Multiflorae Fructus Extracts Regulate the Differentiation and Vascular Endothelial Cell-mediated Proliferation of Keratinocytes.","authors":"Sae Asayama, Tami Igarashi, Yosihimi Abe, Ayaka Iwasaki, Mizuki Kubo, Ayaka Ikeda, Kouki Akiyama, Tadashi Okamoto, Masayuki Yagi, Yoko Niki, Hideya Ando, Masamitsu Ichihashi, Ken-Ichi Mizutani","doi":"10.1093/bbb/zbaf007","DOIUrl":"https://doi.org/10.1093/bbb/zbaf007","url":null,"abstract":"<p><p>Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture. In addition, RMFE promoted human umbilical vein endothelial cell (HUVEC) proliferation and angiogenesis, whereas the conditioned medium from RMFE-treated HUVECs further promoted NHEK proliferation and increased wound healing ability. Analysis of constituent bioactivities identified a quercetin derivative as a potential mediator of NHEK and HUVEC responses to RMFE. Taken together, these results suggest that RMFE enhances epidermal functions through both direct effects on keratinocytes and indirect effects mediated by endothelial cells.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unique substrate specificity of PonAAS2, an aromatic aldehyde synthase, involved in a phytohormone auxin biosynthesis in a gall-inducing sawfly Euura sp. "Pontania". PonAAS2是一种芳香醛合成酶,参与植物激素生长素的生物合成,具有独特的底物特异性。“Pontania”。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-16 DOI: 10.1093/bbb/zbaf005
Yoshihito Suzuki, Hikaru Ichikawa, Yuri Kunioka, Umi Miyata, Shugo Nakamura, Zui Fujimoto
{"title":"A unique substrate specificity of PonAAS2, an aromatic aldehyde synthase, involved in a phytohormone auxin biosynthesis in a gall-inducing sawfly Euura sp. \"Pontania\".","authors":"Yoshihito Suzuki, Hikaru Ichikawa, Yuri Kunioka, Umi Miyata, Shugo Nakamura, Zui Fujimoto","doi":"10.1093/bbb/zbaf005","DOIUrl":"https://doi.org/10.1093/bbb/zbaf005","url":null,"abstract":"<p><p>The aromatic aldehyde synthase (AAS), PonAAS2, from the gall-inducing sawfly has been identified as a biosynthetic enzyme for indole-3-acetic acid (IAA), a key molecule of the plant hormone auxin, which is thought to play a role in gall induction. Unlike other insect AASs that convert Dopa, PonAAS2 uniquely converts L-tryptophan (Trp) into indole-3-acetaldehyde, a precursor of IAA. In this study, an examination of AAS enzymes from various insect species revealed that the ability to convert Trp has been acquired in only a very limited taxonomic group. Comparative analysis between PonAAS2 and DjAAS2 from a gall wasp showed that, despite having conserved substrate-recognition amino acids, they exhibit different substrate specificities. This difference likely arises from variations in how these enzymes' monomers interact during dimer formation, as demonstrated by amino acid substitution experiments and structural predictions.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of eumelanogenesis-related genes by ethanol extract of Melaleuca Leucadendron leaves. 千层桉叶乙醇提取物对真黑发生相关基因的调控作用。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-16 DOI: 10.1093/bbb/zbae204
Myungsam Park, Younhwa Nho, Insanu Muhamad, Rizaldy Defri, Jae Sung Hwang
{"title":"Regulation of eumelanogenesis-related genes by ethanol extract of Melaleuca Leucadendron leaves.","authors":"Myungsam Park, Younhwa Nho, Insanu Muhamad, Rizaldy Defri, Jae Sung Hwang","doi":"10.1093/bbb/zbae204","DOIUrl":"https://doi.org/10.1093/bbb/zbae204","url":null,"abstract":"<p><p>Eumelanin, a type of skin melanin pigment, possesses the ability to absorb a wide range of wavelengths, providing protection to the skin from ultraviolet radiation. However, excessive production of eumelanin may result in hyperpigmentation. Consequently, the development of skin-brightening products that suppress eumelanin synthesis to achieve a lighter and more even skin tone is necessary. The present study investigated the potential application of Melaleuca leucadendron as a natural skin-brightening agent. We investigated the effects of the ethanol leaf extract of M. Leucadendron on α-melanocyte-stimulating hormone-induced melanogenesis in B16F10 cells and identified the key factors involved in melanogenesis. This leaf extract significantly inhibited melanin production by downregulating the expression of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase without causing cytotoxicity. Furthermore, it substantially reduced melanin content in a 3D skin model. These results suggest that the extract of M. Leucadendron is a promising, safe, and effective skin-brightening agent.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of microemulsion system on water dispersibility and bioavailability of γ-oryzanol. 微乳液体系对γ-谷维醇水分散性和生物利用度的影响。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-15 DOI: 10.1093/bbb/zbaf002
Junya Ito, Naoko Kumagai, Ayaka Suzuki, Naoki Shoji, Isabella Supardi Parida, Mamoru Takahashi, Kiyotaka Nakagawa
{"title":"Effect of microemulsion system on water dispersibility and bioavailability of γ-oryzanol.","authors":"Junya Ito, Naoko Kumagai, Ayaka Suzuki, Naoki Shoji, Isabella Supardi Parida, Mamoru Takahashi, Kiyotaka Nakagawa","doi":"10.1093/bbb/zbaf002","DOIUrl":"https://doi.org/10.1093/bbb/zbaf002","url":null,"abstract":"<p><p>This study developed water-dispersible γ-oryzanol (WD-OZ) using microemulsion system and assessed their absorption in rats. While γ-oryzanol itself is hardly soluble in water, WD-OZ exhibited high water dispersibility, and γ-oryzanol, along with its metabolites, was detected in rat plasma. These findings provide a solid basis for future application of the microemulsion-based approach to enhance the bioavailability of γ-oryzanol in food.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FRPR-1, a G protein-coupled receptor (GPCR) in the FMRFamide-related peptide receptor family, modulates larval development as a receptor candidate of the FMRFamide-like peptide FLP-1 in Caenorhabditis elegans. FRPR-1是fmrfamily相关肽受体家族中的G蛋白偶联受体(GPCR),在秀丽隐杆线虫中作为fmrfamily样肽FLP-1的候选受体调节幼虫的发育。
IF 1.4 4区 生物学
Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-01-15 DOI: 10.1093/bbb/zbaf004
Risako Une, Riko Uegaki, Sho Maega, Masahiro Ono, Tomohiro Bito, Takashi Iwasaki, Akira Shiraishi, Honoo Satake, Tsuyoshi Kawano
{"title":"FRPR-1, a G protein-coupled receptor (GPCR) in the FMRFamide-related peptide receptor family, modulates larval development as a receptor candidate of the FMRFamide-like peptide FLP-1 in Caenorhabditis elegans.","authors":"Risako Une, Riko Uegaki, Sho Maega, Masahiro Ono, Tomohiro Bito, Takashi Iwasaki, Akira Shiraishi, Honoo Satake, Tsuyoshi Kawano","doi":"10.1093/bbb/zbaf004","DOIUrl":"https://doi.org/10.1093/bbb/zbaf004","url":null,"abstract":"<p><p>FMRFamide-like peptides (FLPs) and their receptors FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as a of FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: 1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; 2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; 3) FRPR-1 as well as FLP-1modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and 4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect. Thus, FRPR-1 regulates larval development and diapause by modulating DAF-28 production and secretion. This study may provide new insights into the development of novel nematicides targeting parasitic nematodes using FRPR-1 inhibitors.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信