Brain Structure & Function最新文献

筛选
英文 中文
Early life stress, literacy and dyslexia: an evolutionary perspective. 早期生活压力、读写能力和阅读障碍:进化论视角。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-04 DOI: 10.1007/s00429-024-02766-8
John R Kershner
{"title":"Early life stress, literacy and dyslexia: an evolutionary perspective.","authors":"John R Kershner","doi":"10.1007/s00429-024-02766-8","DOIUrl":"10.1007/s00429-024-02766-8","url":null,"abstract":"<p><p>Stress and learning co-evolved in parallel, with their interdependence critical to the survival of the species. Even today, the regulation of moderate levels of stress by the central autonomic network (CAN), especially during pre- and post-natal periods, facilitates biological adaptability and is an essential precursor for the cognitive requisites of learning to read. Reading is a remarkable evolutionary achievement of the human brain, mysteriously unusual, because it is not pre-wired with a genetic address to facilitate its acquisition. There is no gene for reading. The review suggests that reading co-opts a brain circuit centered in the left hemisphere ventral occipital cortex that evolved as a domain-general visual processor. Its adoption by reading depends on the CAN's coordination of the learning and emotional requirements of learning to read at the metabolic, cellular, synaptic, and network levels. By stabilizing a child's self-control and modulating the attention network's inhibitory controls over the reading circuit, the CAN plays a key role in school readiness and learning to read. In addition, the review revealed two beneficial CAN evolutionary adjustments to early-life stress \"overloads\" that come with incidental costs of school under-performance and dyslexia. A short-term adaptation involving methylation of the FKBP5 and NR3C1 genes is a liability for academic achievement in primary school. The adaptation leading to dyslexia induces alterations in BDNF trafficking, promoting long-term adaptive fitness by protecting against excessive glucocorticoid toxicity but risks reading difficulties by disruptive signaling from the CAN to the attention networks and the reading circuit.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"809-822"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered functional-structural coupling may predict Parkinson's patient's depression. 功能-结构耦合的改变可预测帕金森病人的抑郁。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-13 DOI: 10.1007/s00429-024-02780-w
Min Wang, Changlian Tan, Qin Shen, Sainan Cai, Qinru Liu, Haiyan Liao
{"title":"Altered functional-structural coupling may predict Parkinson's patient's depression.","authors":"Min Wang, Changlian Tan, Qin Shen, Sainan Cai, Qinru Liu, Haiyan Liao","doi":"10.1007/s00429-024-02780-w","DOIUrl":"10.1007/s00429-024-02780-w","url":null,"abstract":"<p><p>We aimed to elucidate the neurobiological basis of depression in Parkinson's disease and identify potential imaging markers for depression in patients with Parkinson's disease. We recruited 43 normal controls (NC), 46 depressed Parkinson's disease patients (DPD) and 56 non-depressed Parkinson's disease (NDPD). All participants underwent routine T2-weighted, T2Flair, and resting-state scans on the same 3.0 T magnetic resonance imaging (MRI) scanner at our hospital. Pre-processing includes calculating surface-based Regional Homogeneity (2DReHo) and cortical thickness. Then we defined the correlation coefficient between 2DReHo and cortical thickness as the functional-structural coupling index. Between-group comparisons were conducted on the Fisher's Z-transformed correlation coefficients. To identify specific regions of decoupling, the 2DReHo for each participant were divided by cortical thickness at each vertex, followed by threshold-free cluster enhancement (TFCE) multiple comparison correction. Binary logistic regression analysis was performed with DPD as the dependent variable, and significantly altered indicators as the independent variables. Receiver operating characteristic curves were constructed to compare the diagnostic performance of individual predictors and combinations using R and MedCalc software. DPD patients exhibited a significantly lower whole-brain functional-structural coupling index than NDPD patients and NC. Abnormal functional-structural coupling was primarily observed in the left inferior parietal lobule and right primary and early visual cortices in DPD patients. Receiver operating characteristic analysis revealed that the combination of cortical functional-structural coupling, surface-based ReHo, and thickness had the best diagnostic performance, achieving a sensitivity of 65% and specificity of 77.7%. This is the first study to explore the relationship between functional and structural changes in DPD patients and evaluate the diagnostic performance of these altered correlations to predict depression in Parkinson's disease patients. We posit that these changes in functional-structural relationships may serve as imaging biomarkers for depression in Parkinson's disease patients, potentially aiding in the classification and diagnosis of Parkinson's disease. Additionally, our findings provide functional and structural imaging evidence for exploring the neurobiological basis of depression in Parkinson's disease.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"897-907"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140118809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rodent maze studies: from following simple rules to complex map learning. 啮齿动物迷宫研究:从遵循简单规则到复杂的地图学习。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-15 DOI: 10.1007/s00429-024-02771-x
Kjell Wijnen, Lisa Genzel, Jacqueline van der Meij
{"title":"Rodent maze studies: from following simple rules to complex map learning.","authors":"Kjell Wijnen, Lisa Genzel, Jacqueline van der Meij","doi":"10.1007/s00429-024-02771-x","DOIUrl":"10.1007/s00429-024-02771-x","url":null,"abstract":"<p><p>More than 100 years since the first maze designed for rodent research, researchers now have the choice of a variety of mazes that come in many different shapes and sizes. Still old designs get modified and new designs are introduced to fit new research questions. Yet, which maze is the most optimal to use or which training paradigm should be applied, remains up for debate. In this review, we not only provide a historical overview of maze designs and usages in rodent learning and memory research, but also discuss the possible navigational strategies the animals can use to solve each maze. Furthermore, we summarize the different phases of learning that take place when a maze is used as the experimental task. At last, we delve into how training and maze design can affect what the rodents are actually learning in a spatial task.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"823-841"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A revision of the dorsal origin of the frontal aslant tract (FAT) in the superior frontal gyrus: a DWI-tractographic study. 额叶上回额叶斜束(FAT)背侧起源的修正:一项 DWI 图谱研究。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-19 DOI: 10.1007/s00429-024-02778-4
Marco Tagliaferri, Gabriele Amorosino, Linda Voltolini, Davide Giampiccolo, Paolo Avesani, Luigi Cattaneo
{"title":"A revision of the dorsal origin of the frontal aslant tract (FAT) in the superior frontal gyrus: a DWI-tractographic study.","authors":"Marco Tagliaferri, Gabriele Amorosino, Linda Voltolini, Davide Giampiccolo, Paolo Avesani, Luigi Cattaneo","doi":"10.1007/s00429-024-02778-4","DOIUrl":"10.1007/s00429-024-02778-4","url":null,"abstract":"<p><p>The frontal aslant tract (FAT) is a white matter tract connecting the superior frontal gyrus (SFG) to the inferior frontal gyrus (IFG). Its dorsal origin is identified in humans in the medial wall of the SFG, in the supplementary motor complex (SM-complex). However, empirical observation shows that many FAT fibres appear to originate from the dorsal, rather than medial, portion of the SFG. We quantitatively investigated the actual origin of FAT fibres in the SFG, specifically discriminating between terminations in the medial wall and in the convexity of the SFG. We analysed data from 105 subjects obtained from the Human Connectome Project (HCP) database. We parcelled the cortex of the IFG, dorsal SFG and medial SFG in several regions of interest (ROIs) ordered in a caudal-rostral direction, which served as seed locations for the generation of streamlines. Diffusion imaging data (DWI) was processed using a multi-shell multi-tissue CSD-based algorithm. Results showed that the number of streamlines originating from the dorsal wall of the SFG significantly exceeds those from the medial wall of the SFG. Connectivity patterns between ROIs indicated that FAT sub-bundles are segregated in parallel circuits ordered in a caudal-rostral direction. Such high degree of coherence in the streamline trajectory allows to establish pairs of homologous cortical parcels in the SFG and IFG. We conclude that the frontal origin of the FAT is found in both dorsal and medial surfaces of the superior frontal gyrus.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"987-999"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the neuroanatomy of Josephoartigasia monesi and the evolution of encephalization in caviomorph rodents. 揭开约瑟芬啮齿动物神经解剖学的面纱,以及腔肠动物脑化的进化。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-19 DOI: 10.1007/s00429-024-02762-y
José Darival Ferreira, Andrés Rinderknecht, Jamile de Moura Bubadué, Luiza Flores Gasparetto, Maria Teresa Dozo, Marcelo R Sánchez-Villagra, Leonardo Kerber
{"title":"Unveiling the neuroanatomy of Josephoartigasia monesi and the evolution of encephalization in caviomorph rodents.","authors":"José Darival Ferreira, Andrés Rinderknecht, Jamile de Moura Bubadué, Luiza Flores Gasparetto, Maria Teresa Dozo, Marcelo R Sánchez-Villagra, Leonardo Kerber","doi":"10.1007/s00429-024-02762-y","DOIUrl":"10.1007/s00429-024-02762-y","url":null,"abstract":"<p><p>Caviomorph rodents are an exceptional model for studying the effects of ecological factors and size relations on brain evolution. These mammals are not only speciose and ecologically diverse but also present wide body size disparity, especially when considering their fossil relatives. Here, we described the brain anatomy of the largest known rodent, Josephoartigasia monesi, uncovering distinctive features within this species regarding other taxa. Albeit resembling extant pacarana Dinomys branickii, J. monesi stands out due to its longer olfactory tract and well-developed sagittal sinus. Challenging the previous hypothesis that giant rodents possessed comparatively smaller brains, we found that J. monesi and another giant extinct rodent, Neoepiblema acreensis, are within the encephalization range of extant caviomorphs. This was unraveled while developing the a Phylogenetic Encephalization Quotient (PEQ) for Caviomorpha. With PEQ, we were able to trace brain-size predictions more accurately, accounting for species-shared ancestry while adding the extinct taxa phenotypic diversity into the prediction model. According to our results, caviomorphs encephalization patterns are not the product of ecological adaptations, and brain allometry is highly conservative within the clade. We challenge future studies to investigate caviomorphs encephalization within different taxonomic ranks while increasing the sampled taxa diversity, especially of extinct forms, in order to fully comprehend the magnitude of this evolutionary stasis.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"971-985"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered DTI scalars in the hippocampus are associated with morphological and structural changes after traumatic brain injury. 海马区 DTI 标度的改变与脑外伤后的形态和结构变化有关。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-02-21 DOI: 10.1007/s00429-024-02758-8
Palkin Arora, Richa Trivedi, Megha Kumari, Kavita Singh, Rajat Sandhir, Maria M D'Souza, Poonam Rana
{"title":"Altered DTI scalars in the hippocampus are associated with morphological and structural changes after traumatic brain injury.","authors":"Palkin Arora, Richa Trivedi, Megha Kumari, Kavita Singh, Rajat Sandhir, Maria M D'Souza, Poonam Rana","doi":"10.1007/s00429-024-02758-8","DOIUrl":"10.1007/s00429-024-02758-8","url":null,"abstract":"<p><p>Blunt and diffuse injury is a highly prevalent form of traumatic brain injury (TBI) which can result in microstructural alterations in the brain. The blunt impact on the brain can affect the immediate contact region but can also affect the vulnerable regions like hippocampus, leading to functional impairment and long-lasting cognitive deficits. The hippocampus of the moderate weight drop injured male rats was longitudinally assessed for microstructural changes using in vivo MR imaging from 4 h to Day 30 post-injury (PI). The DTI analysis found a prominent decline in the apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) values after injury. The perturbed DTI scalars accompanied histological changes in the hippocampus, wherein both the microglia and astrocytes showed changes in the morphometric parameters at all timepoints. Along with this, the hippocampus showed presence of Aβ positive fibrils and neurite plaques after injury. Therefore, this study concludes that TBI can lead to a complex morphological, cellular, and structural alteration in the hippocampus which can be diagnosed using in vivo MR imaging techniques to prevent long-term functional deficits.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"853-863"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139911975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aspiration removal of orbitofrontal cortex disrupts cholinergic fibers of passage to anterior cingulate cortex in rhesus macaques. 吸除猕猴眶额皮层会破坏通往前扣带回皮层的胆碱能纤维。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-19 DOI: 10.1007/s00429-024-02776-6
M A G Eldridge, A Mohanty, B E Hines, P M Kaskan, E A Murray
{"title":"Aspiration removal of orbitofrontal cortex disrupts cholinergic fibers of passage to anterior cingulate cortex in rhesus macaques.","authors":"M A G Eldridge, A Mohanty, B E Hines, P M Kaskan, E A Murray","doi":"10.1007/s00429-024-02776-6","DOIUrl":"10.1007/s00429-024-02776-6","url":null,"abstract":"<p><p>The study of anthropoid nonhuman primates has provided valuable insights into frontal cortex function in humans, as these primates share similar frontal anatomical subdivisions (Murray et al. 2011). Causal manipulation studies have been instrumental in advancing our understanding of this area. One puzzling finding is that macaques with bilateral aspiration removals of orbitofrontal cortex (OFC) are impaired on tests of cognitive flexibility and emotion regulation, whereas those with bilateral excitotoxic lesions of OFC are not (Rudebeck et al. 2013). This discrepancy is attributed to the inadvertent disruption of fibers of passage by aspiration lesions but not by excitotoxic lesions. Which fibers of passage are responsible for the impairments observed? One candidate is cholinergic fibers originating in the nucleus basalis magnocellularis (NBM) and passing nearby or through OFC on their way to other frontal cortex regions (Kitt et al. 1987). To investigate this possibility, we performed unilateral aspiration lesions of OFC in three macaques, and then compared cholinergic innervation of the anterior cingulate cortex (ACC) between hemispheres. Histological assessment revealed diminished cholinergic innervation in the ACC of hemispheres with OFC lesions relative to intact hemispheres. This finding indicates that aspiration lesions of the OFC disrupt cholinergic fibers of passage, and suggests the possibility that loss of cholinergic inputs to ACC contributes to the impairments in cognitive flexibility and emotion regulation observed after aspiration but not excitotoxic lesions of OFC.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1011-1019"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combination treatment of hypothermia and intranasal insulin ameliorates the structural and functional changes in a rat model of traumatic brain injury. 低体温和鼻内胰岛素联合治疗可改善创伤性脑损伤大鼠模型的结构和功能变化。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-18 DOI: 10.1007/s00429-024-02769-5
Hadi Moatamed Jahromi, Ali Rafati, Saied Karbalay-Doust, Somaye Keshavarz, Maryam Naseh
{"title":"The combination treatment of hypothermia and intranasal insulin ameliorates the structural and functional changes in a rat model of traumatic brain injury.","authors":"Hadi Moatamed Jahromi, Ali Rafati, Saied Karbalay-Doust, Somaye Keshavarz, Maryam Naseh","doi":"10.1007/s00429-024-02769-5","DOIUrl":"10.1007/s00429-024-02769-5","url":null,"abstract":"<p><p>The present study aimed to investigate the combination effects of hypothermia (HT) and intranasal insulin (INS) on structural changes of the hippocampus and cognitive impairments in the traumatic brain injury (TBI) rat model. The rats were divided randomly into the following five groups (n = 10): Sham, TBI, TBI with HT treatment for 3 h (TBI + HT), TBI with INS (ten microliters of insulin) treatment daily for 7 days (TBI + INS), and TBI with combining HT and INS (TBI + HT + INS). At the end of the 7th day, the open field and the Morris water maze tests were done for evaluation of anxiety-like behavior and memory performance. Then, after sacrificing, the brain was removed for stereological study. TBI led to an increase in the total volume of hippocampal subfields CA1 and DG and a decrease in the total number of neurons and non-neuronal cells in both sub-regions, which was associated with anxiety-like behavior and memory impairment. Although, the combination of HT and INS prevented the increased hippocampal volume and cell loss and improved behavioral performances in the TBI group. Our study suggests that the combined treatment of HT and INS could prevent increased hippocampal volume and cell loss in CA1 and DG sub-regions and consequently improve anxiety-like behaviors and memory impairment following TBI.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"947-957"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MRI atlas of the pituitary gland in young female adults. 年轻女性脑垂体核磁共振成像图集。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-19 DOI: 10.1007/s00429-024-02779-3
Manel Merabet Zennadi, Maurice Ptito, Jérôme Redouté, Nicolas Costes, Claire Boutet, Natacha Germain, Bogdan Galusca, Fabien C Schneider
{"title":"MRI atlas of the pituitary gland in young female adults.","authors":"Manel Merabet Zennadi, Maurice Ptito, Jérôme Redouté, Nicolas Costes, Claire Boutet, Natacha Germain, Bogdan Galusca, Fabien C Schneider","doi":"10.1007/s00429-024-02779-3","DOIUrl":"10.1007/s00429-024-02779-3","url":null,"abstract":"<p><p>The probabilistic topography and inter-individual variability of the pituitary gland (PG) remain undetermined. The absence of a standardized reference atlas hinders research on PG volumetrics. In this study, we aimed at creating maximum probability maps for the anterior and posterior PG in young female adults. We manually delineated the anterior and posterior parts of the pituitary glands in 26 healthy subjects using high-resolution MRI T1 images. A three-step procedure and a cost function-masking approach were employed to optimize spatial normalization for the PG. We generated probabilistic atlases and maximum probability maps, which were subsequently coregistered back to the subjects' space and compared to manual delineations. Manual measurements led to a total pituitary volume of 705 ± 88 mm³, with the anterior and posterior volumes measuring 614 ± 82 mm³ and 91 ± 20 mm³, respectively. The mean relative volume difference between manual and atlas-based estimations was 1.3%. The global pituitary atlas exhibited an 80% (± 9%) overlap for the DICE index and 67% (± 11%) for the Jaccard index. Similarly, these values were 77% (± 13%) and 64% (± 14%) for the anterior pituitary atlas and 62% (± 21%) and 47% (± 17%) for the posterior PG atlas, respectively. We observed a substantial concordance and a significant correlation between the volume estimations of the manual and atlas-based methods for the global pituitary and anterior volumes. The maximum probability maps of the anterior and posterior PG lay the groundwork for automatic atlas-based segmentation methods and the standardized analysis of large PG datasets.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1001-1010"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A clinico-anatomical dissection of the magnocellular and parvocellular pathways in a patient with the Riddoch syndrome. 对一名雷多克综合征患者的巨细胞和副巨细胞通路进行临床解剖学剖析。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-05-01 Epub Date: 2024-03-16 DOI: 10.1007/s00429-024-02774-8
Ahmad Beyh, Samuel E Rasche, Alexander Leff, Dominic Ffytche, Semir Zeki
{"title":"A clinico-anatomical dissection of the magnocellular and parvocellular pathways in a patient with the Riddoch syndrome.","authors":"Ahmad Beyh, Samuel E Rasche, Alexander Leff, Dominic Ffytche, Semir Zeki","doi":"10.1007/s00429-024-02774-8","DOIUrl":"10.1007/s00429-024-02774-8","url":null,"abstract":"<p><strong>Key message: </strong>The Riddoch syndrome is thought to be caused by damage to the primary visual cortex (V1), usually following a vascular event. This study shows that damage to the anatomical input to V1, i.e., the optic radiations, can result in selective visual deficits that mimic the Riddoch syndrome. The results also highlight the differential susceptibility of the magnocellular and parvocellular visual systems to injury. Overall, this study offers new insights that will improve our understanding of the impact of brain injury and neurosurgery on the visual pathways. The Riddoch syndrome, characterised by the ability to perceive, consciously, moving visual stimuli but not static ones, has been associated with lesions of primary visual cortex (V1). We present here the case of patient YL who, after a tumour resection surgery that spared his V1, nevertheless showed symptoms of the Riddoch syndrome. Based on our testing, we postulated that the magnocellular (M) and parvocellular (P) inputs to his V1 may be differentially affected. In a first experiment, YL was presented with static and moving checkerboards in his blind field while undergoing multimodal magnetic resonance imaging (MRI), including structural, functional, and diffusion, acquired at 3 T. In a second experiment, we assessed YL's neural responses to M and P visual stimuli using psychophysics and high-resolution fMRI acquired at 7 T. YL's optic radiations were partially damaged but not severed. We found extensive activity in his visual cortex for moving, but not static, visual stimuli, while our psychophysical tests revealed that only low-spatial frequency moving checkerboards were perceived. High-resolution fMRI revealed strong responses in YL's V1 to M stimuli and very weak ones to P stimuli, indicating a functional P lesion affecting V1. In addition, YL frequently reported seeing moving stimuli and discriminating their direction of motion in the absence of visual stimulation, suggesting that he was experiencing visual hallucinations. Overall, this study highlights the possibility of a selective loss of P inputs to V1 resulting in the Riddoch syndrome and in hallucinations of visual motion.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"937-946"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140139897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信