Brain Structure & Function最新文献

筛选
英文 中文
White matter associations with spelling performance. 白质与拼写成绩的关系
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-03-25 DOI: 10.1007/s00429-024-02775-7
Romi Sagi, J S H Taylor, Kyriaki Neophytou, Tamar Cohen, Brenda Rapp, Kathleen Rastle, Michal Ben-Shachar
{"title":"White matter associations with spelling performance.","authors":"Romi Sagi, J S H Taylor, Kyriaki Neophytou, Tamar Cohen, Brenda Rapp, Kathleen Rastle, Michal Ben-Shachar","doi":"10.1007/s00429-024-02775-7","DOIUrl":"10.1007/s00429-024-02775-7","url":null,"abstract":"<p><p>Multiple neurocognitive processes are involved in the highly complex task of producing written words. Yet, little is known about the neural pathways that support spelling in healthy adults. We assessed the associations between performance on a difficult spelling-to-dictation task and microstructural properties of language-related white matter pathways, in a sample of 73 native English-speaking neurotypical adults. Participants completed a diffusion magnetic resonance imaging scan and a cognitive assessment battery. Using constrained spherical deconvolution modeling and probabilistic tractography, we reconstructed dorsal and ventral white matter tracts of interest, bilaterally, in individual participants. Spelling associations were found in both dorsal and ventral stream pathways. In high-performing spellers, spelling scores significantly correlated with fractional anisotropy (FA) within the left inferior longitudinal fasciculus, a ventral stream pathway. In low-performing spellers, spelling scores significantly correlated with FA within the third branch of the right superior longitudinal fasciculus, a dorsal pathway. An automated analysis of spelling errors revealed that high- and low- performing spellers also differed in their error patterns, diverging primarily in terms of the orthographic distance between their errors and the correct spelling, compared to the phonological plausibility of their spelling responses. The results demonstrate the complexity of the neurocognitive architecture of spelling. The distinct white matter associations and error patterns detected in low- and high- performing spellers suggest that they rely on different cognitive processes, such that high-performing spellers rely more on lexical-orthographic representations, while low-performing spellers rely more on phoneme-to-grapheme conversion.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2115-2135"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural properties in subacute aphasia: concurrent and prospective relationships underpinning recovery. 亚急性失语症的微观结构特性:支持康复的并发和前瞻性关系。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-07-06 DOI: 10.1007/s00429-024-02826-z
Melissa D Stockbridge, Zafer Keser, Leonardo Bonilha, Argye E Hillis
{"title":"Microstructural properties in subacute aphasia: concurrent and prospective relationships underpinning recovery.","authors":"Melissa D Stockbridge, Zafer Keser, Leonardo Bonilha, Argye E Hillis","doi":"10.1007/s00429-024-02826-z","DOIUrl":"10.1007/s00429-024-02826-z","url":null,"abstract":"<p><strong>Background: </strong>Few investigations examined the relationship between microstructural white matter integrity and subacute post-stroke linguistic performance or the relationship between microstructural integrity and the recovery of language function. We examined two key questions: (1) How does subacute language performance, measured in single words and discourse, relate to the microstructural integrity of key white matter regions of interest in the language network? and (2) Does the integrity of these regions before treatment predict the improvement or resolution of linguistic symptoms immediately and chronically following treatment?</p><p><strong>Methods: </strong>58 participants within the first three months of stroke were enrolled in a randomized, single-center, double-blind, sham-controlled, study of anodal transcranial direct current stimulation combined with a computer-delivered speech and language naming therapy for subacute aphasia and were asked to complete magnetic resonance imaging at enrollment. Microstructural integrity was evaluated using diffusion tensor imaging processed with atlas-based segmentation. Regression and correlation analyses were conducted.</p><p><strong>Results: </strong>A subset of 22 participants received diffusion tensor imaging. Picture naming accuracy significantly correlated with lower mean diffusivity (higher microstructural integrity) in the left posterior inferior temporal gyrus. Recovery of naming performance was predicted by days since stroke and baseline microstructural integrity of the left posterior middle temporal gyrus, arcuate fasciculus, and superior longitudinal fasciculus. Recovery of discourse efficiency was significantly predicted by the same model.</p><p><strong>Conclusions: </strong>This study demonstrates an association between picture naming and discourse and microstructural integrity of the key regions in the language network for patients with subacute post-stroke aphasia. Baseline microstructural integrity significantly predicts language recovery.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2207-2217"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the role of the arcuate fasciculus in word production and repetition: a reply to Van den Hoven et al. (2024). 论弧状筋膜在造词和复述中的作用:对 Van den Hoven 等人(2024 年)的答复。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-08-13 DOI: 10.1007/s00429-024-02849-6
Ardi Roelofs
{"title":"On the role of the arcuate fasciculus in word production and repetition: a reply to Van den Hoven et al. (2024).","authors":"Ardi Roelofs","doi":"10.1007/s00429-024-02849-6","DOIUrl":"10.1007/s00429-024-02849-6","url":null,"abstract":"<p><p>Van den Hoven et al. contested my interpretation of Wernicke regarding the role of the arcuate fasciculus (AF) in word production. Here, I clarify and defend my interpretation. They also questioned the assumption of AF subtracts in my modern account, stating that subtracts are difficult to distinguish anatomically due to overlapping terminations. Here, I make clear that overlap in terminations was actually part of my account, in which differentially damaged subtracts explained patients' differential naming and repetition performance as well as types of repetition performance.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2379-2383"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A preliminary study of white matter disconnections underlying deficits in praxis in left hemisphere stroke patients. 关于左半球脑卒中患者练习障碍背后的白质断裂的初步研究。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-07-17 DOI: 10.1007/s00429-024-02814-3
Elisabeth Rounis, Elinor Thompson, Michele Scandola, Victor Nozais, Gloria Pizzamiglio, Michel Thiebaut de Schotten, Valentina Pacella
{"title":"A preliminary study of white matter disconnections underlying deficits in praxis in left hemisphere stroke patients.","authors":"Elisabeth Rounis, Elinor Thompson, Michele Scandola, Victor Nozais, Gloria Pizzamiglio, Michel Thiebaut de Schotten, Valentina Pacella","doi":"10.1007/s00429-024-02814-3","DOIUrl":"10.1007/s00429-024-02814-3","url":null,"abstract":"<p><p>Limb apraxia is a higher-order motor disorder often occurring post-stroke, which affects skilled actions. It is assessed through tasks involving gesture production or pantomime, recognition, meaningless gesture imitation, complex figure drawing, single and multi-object use. A two-system model for the organisation of actions hypothesizes distinct pathways mediating praxis deficits via conceptual, 'indirect', and perceptual 'direct' routes to action. Traditional lesion- symptom mapping techniques have failed to identify these distinct routes. We assessed 29 left hemisphere stroke patients to investigate white matter disconnections on deficits of praxis tasks from the Birmingham Cognitive Screening. White matter disconnection maps derived from patients' structural T1 lesions were created using a diffusion-weighted healthy participant dataset acquired from the human connectome project (HCP). Initial group-level regression analyses revealed significant disconnection between occipital lobes via the splenium of the corpus callosum and involvement of the inferior longitudinal fasciculus in meaningless gesture imitation deficits. There was a trend of left fornix disconnection in gesture production deficits. Further, voxel-wise Bayesian Crawford single-case analyses performed on two patients with the most severe meaningless gesture imitation and meaningful gesture production deficits, respectively, confirmed distinct posterior interhemispheric disconnection, for the former, and disconnections between temporal and frontal areas via the fornix, rostrum of the corpus callosum and anterior cingulum, for the latter. Our results suggest distinct pathways associated with perceptual and conceptual deficits akin to 'direct' and 'indirect' action routes, with some patients displaying both. Larger studies are needed to validate and elaborate on these findings, advancing our understanding of limb apraxia.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2255-2268"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial-temporal representation of the astroglial markers in the developing human cortex. 发育中的人类大脑皮层中星形胶质细胞标记的空间-时间表示。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-08-17 DOI: 10.1007/s00429-024-02850-z
A Kharlamova, Yu Krivova, A Proshchina, O Godovalova, D Otlyga, E Andreeva, M Shachina, E Grushetskaya, S Saveliev
{"title":"Spatial-temporal representation of the astroglial markers in the developing human cortex.","authors":"A Kharlamova, Yu Krivova, A Proshchina, O Godovalova, D Otlyga, E Andreeva, M Shachina, E Grushetskaya, S Saveliev","doi":"10.1007/s00429-024-02850-z","DOIUrl":"10.1007/s00429-024-02850-z","url":null,"abstract":"<p><p>Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2385-2403"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians. 音乐奖励敏感性与音乐家背侧和运动白质网络内更大的信息传递能力有关。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-07-25 DOI: 10.1007/s00429-024-02836-x
Tomas E Matthews, Massimo Lumaca, Maria A G Witek, Virginia B Penhune, Peter Vuust
{"title":"Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians.","authors":"Tomas E Matthews, Massimo Lumaca, Maria A G Witek, Virginia B Penhune, Peter Vuust","doi":"10.1007/s00429-024-02836-x","DOIUrl":"10.1007/s00429-024-02836-x","url":null,"abstract":"<p><p>There are pronounced differences in the degree to which individuals experience music-induced pleasure which are linked to variations in structural connectivity between auditory and reward areas. However, previous studies exploring the link between white matter structure and music reward sensitivity (MRS) have relied on standard diffusion tensor imaging methods, which present challenges in terms of anatomical accuracy and interpretability. Further, the link between MRS and connectivity in regions outside of auditory-reward networks, as well as the role of musical training, have yet to be investigated. Therefore, we investigated the relation between MRS and structural connectivity in a large number of directly segmented and anatomically verified white matter tracts in musicians (n = 24) and non-musicians (n = 23) using state-of-the-art tract reconstruction and fixel-based analysis. Using a manual tract-of-interest approach, we additionally tested MRS-white matter associations in auditory-reward networks seen in previous studies. Within the musician group, there was a significant positive relation between MRS and fiber density and cross section in the right middle longitudinal fascicle connecting auditory and inferior parietal cortices. There were also positive relations between MRS and fiber-bundle cross-section in tracts connecting the left thalamus to the ventral precentral gyrus and connecting the right thalamus to the right supplementary motor area, however, these did not survive FDR correction. These results suggest that, within musicians, dorsal auditory and motor networks are crucial to MRS, possibly via their roles in top-down predictive processing and auditory-motor transformations.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2299-2313"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic causal modelling highlights the importance of decreased self-inhibition of the sensorimotor cortex in motor fatigability. 动态因果建模强调了感觉运动皮层自我抑制能力下降对运动性疲劳的重要性。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-08-28 DOI: 10.1007/s00429-024-02840-1
Caroline Heimhofer, Marc Bächinger, Rea Lehner, Stefan Frässle, Joshua Henk Balsters, Nicole Wenderoth
{"title":"Dynamic causal modelling highlights the importance of decreased self-inhibition of the sensorimotor cortex in motor fatigability.","authors":"Caroline Heimhofer, Marc Bächinger, Rea Lehner, Stefan Frässle, Joshua Henk Balsters, Nicole Wenderoth","doi":"10.1007/s00429-024-02840-1","DOIUrl":"10.1007/s00429-024-02840-1","url":null,"abstract":"<p><p>Motor fatigability emerges when challenging motor tasks must be maintained over an extended period of time. It is frequently observed in everyday life and affects patients as well as healthy individuals. Motor fatigability can be measured using simple tasks like finger tapping at maximum speed for 30 s. This typically results in a rapid decrease of tapping frequency, a phenomenon called motor slowing. In a previous study (Bächinger et al, eLife, 8 (September), https://doi.org/10.7554/eLife.46750 , 2019), we showed that motor slowing goes hand in hand with a gradual increase in blood oxygen level dependent signal in the primary sensorimotor cortex (SM1), supplementary motor area (SMA), and dorsal premotor cortex (PMd). It is unclear what drives the activity increase in SM1 caused by motor slowing and whether motor fatigability affects the dynamic interactions between SM1, SMA, and PMd. Here, we performed dynamic causal modelling (DCM) on data of 24 healthy young participants collected during functional magnetic resonance imaging to answer this question. The regions of interest (ROI) were defined based on the peak activation within SM1, SMA, and PMd. The model space consisted of bilateral connections between all ROI, with intrinsic self-modulation as inhibitory, and driving inputs set to premotor areas. Our findings revealed that motor slowing was associated with a significant reduction in SM1 self-inhibition, as uncovered by testing the maximum à posteriori against 0 (t(23)=-4.51, p < 0.001). Additionally, the model revealed a significant decrease in the driving input to premotor areas (t(23) > 2.71, p < 0.05) suggesting that structures other than cortical motor areas may contribute to motor fatigability.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2419-2429"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Concise Language Paradigm (CLaP), a framework for studying the intersection of comprehension and production: electrophysiological properties. 简明语言范式 (CLaP),研究理解与生产交叉的框架:电生理学特性。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-05-15 DOI: 10.1007/s00429-024-02801-8
Natascha Marie Roos, Julia Chauvet, Vitória Piai
{"title":"The Concise Language Paradigm (CLaP), a framework for studying the intersection of comprehension and production: electrophysiological properties.","authors":"Natascha Marie Roos, Julia Chauvet, Vitória Piai","doi":"10.1007/s00429-024-02801-8","DOIUrl":"10.1007/s00429-024-02801-8","url":null,"abstract":"<p><p>Studies investigating language commonly isolate one modality or process, focusing on comprehension or production. Here, we present a framework for a paradigm that combines both: the Concise Language Paradigm (CLaP), tapping into comprehension and production within one trial. The trial structure is identical across conditions, presenting a sentence followed by a picture to be named. We tested 21 healthy speakers with EEG to examine three time periods during a trial (sentence, pre-picture interval, picture onset), yielding contrasts of sentence comprehension, contextually and visually guided word retrieval, object recognition, and naming. In the CLaP, sentences are presented auditorily (constrained, unconstrained, reversed), and pictures appear as normal (constrained, unconstrained, bare) or scrambled objects. Imaging results revealed different evoked responses after sentence onset for normal and time-reversed speech. Further, we replicated the context effect of alpha-beta power decreases before picture onset for constrained relative to unconstrained sentences, and could clarify that this effect arises from power decreases following constrained sentences. Brain responses locked to picture-onset differed as a function of sentence context and picture type (normal vs. scrambled), and naming times were fastest for pictures in constrained sentences, followed by scrambled picture naming, and equally fast for bare and unconstrained picture naming. Finally, we also discuss the potential of the CLaP to be adapted to different focuses, using different versions of the linguistic content and tasks, in combination with electrophysiology or other imaging methods. These first results of the CLaP indicate that this paradigm offers a promising framework to investigate the language system.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2097-2113"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140920984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
White matter connectivity linked to novel word learning in children. 白质连通性与儿童新词学习有关。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-09-26 DOI: 10.1007/s00429-024-02857-6
Clara Ekerdt, Willeke M Menks, Guillén Fernández, James M McQueen, Atsuko Takashima, Gabriele Janzen
{"title":"White matter connectivity linked to novel word learning in children.","authors":"Clara Ekerdt, Willeke M Menks, Guillén Fernández, James M McQueen, Atsuko Takashima, Gabriele Janzen","doi":"10.1007/s00429-024-02857-6","DOIUrl":"10.1007/s00429-024-02857-6","url":null,"abstract":"<p><p>Children and adults are excellent word learners. Increasing evidence suggests that the neural mechanisms that allow us to learn words change with age. In a recent fMRI study from our group, several brain regions exhibited age-related differences when accessing newly learned words in a second language (L2; Takashima et al. Dev Cogn Neurosci 37, 2019). Namely, while the Teen group (aged 14-16 years) activated more left frontal and parietal regions, the Young group (aged 8-10 years) activated right frontal and parietal regions. In the current study we analyzed the structural connectivity data from the aforementioned study, examining the white matter connectivity of the regions that showed age-related functional activation differences. Age group differences in streamline density as well as correlations with L2 word learning success and their interaction were examined. The Teen group showed stronger connectivity than the Young group in the right arcuate fasciculus (AF). Furthermore, white matter connectivity and memory for L2 words across the two age groups correlated in the left AF and the right anterior thalamic radiation (ATR) such that higher connectivity in the left AF and lower connectivity in the right ATR was related to better memory for L2 words. Additionally, connectivity in the area of the right AF that exhibited age-related differences predicted word learning success. The finding that across the two age groups, stronger connectivity is related to better memory for words lends further support to the hypothesis that the prolonged maturation of the prefrontal cortex, here in the form of structural connectivity, plays an important role in the development of memory.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2461-2477"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy. 基于灰质的 1 个月大脑空间统计框架:对婴儿期灰质微观结构的洞察。
IF 2.7 3区 医学
Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI: 10.1007/s00429-024-02853-w
Marissa A DiPiero, Patrik Goncalves Rodrigues, McKaylie Justman, Sophia Roche, Elizabeth Bond, Jose Guerrero Gonzalez, Richard J Davidson, Elizabeth M Planalp, Douglas C Dean
{"title":"Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy.","authors":"Marissa A DiPiero, Patrik Goncalves Rodrigues, McKaylie Justman, Sophia Roche, Elizabeth Bond, Jose Guerrero Gonzalez, Richard J Davidson, Elizabeth M Planalp, Douglas C Dean","doi":"10.1007/s00429-024-02853-w","DOIUrl":"10.1007/s00429-024-02853-w","url":null,"abstract":"<p><p>The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2445-2459"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信