{"title":"Advances in the fMRI analysis of the default mode network: a review.","authors":"Emilio Sanz-Morales, Helena Melero","doi":"10.1007/s00429-024-02888-z","DOIUrl":null,"url":null,"abstract":"<p><p>The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions. Interestingly, the study of its temporal characteristics - the specific frequency spectrum of BOLD signal oscillations -, its developmental trajectory over the course of life, and its interaction with other networks, provides new insight into the DMN's defining features. In this context, this review aims to synthesize the state of the art in the study of the DMN to provide the most updated findings to anyone interested in its research. Finally, some weaknesses in the current state of knowledge and some interesting lines of work for further progress in the study of the DMN are presented.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"22"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02888-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions. Interestingly, the study of its temporal characteristics - the specific frequency spectrum of BOLD signal oscillations -, its developmental trajectory over the course of life, and its interaction with other networks, provides new insight into the DMN's defining features. In this context, this review aims to synthesize the state of the art in the study of the DMN to provide the most updated findings to anyone interested in its research. Finally, some weaknesses in the current state of knowledge and some interesting lines of work for further progress in the study of the DMN are presented.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.