Biotechnology Letters最新文献

筛选
英文 中文
A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae. Rpd3L 组蛋白去乙酰化酶复合物中的一个关键成分 Rxt3 调节黑曲霉的发育、抗逆性、淀粉酶的产生和曲酸的合成。
IF 2 4区 生物学
Biotechnology Letters Pub Date : 2024-07-31 DOI: 10.1007/s10529-024-03515-x
Chaofeng Chang, Herui Wang, Yiling Liu, Yiting Xie, Dingxiang Xue, Feng Zhang
{"title":"A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae.","authors":"Chaofeng Chang, Herui Wang, Yiling Liu, Yiting Xie, Dingxiang Xue, Feng Zhang","doi":"10.1007/s10529-024-03515-x","DOIUrl":"https://doi.org/10.1007/s10529-024-03515-x","url":null,"abstract":"<p><p>Rpd3L is a highly conserved histone deacetylase complex in eukaryotic cells and participates in various cellular processes. However, the roles of the Rpd3L component in filamentous fungi remain to be delineated ultimately. In this study, we constructed two knockout mutants of Rpd3L's Rxt3 subunit and characterized their biological functions in A. oryzae. Phenotypic analysis showed that AoRxt3 played a positive role in hyphal growth and conidia formation. Deletion of Aorxt3 resulted in augmented tolerance to multiple stresses, including cell wall stress, cell membrane stress, endoplasmic reticulum stress, osmotic stress and oxidative stress. Noteworthily, we found that Aorxt3-deleting mutants showed a higher kojic acid production than the control strain. However, the loss of Aorxt3 led to a significant decrease in amylase synthesis. Our findings lay the foundation for further exploring the role of other Rpd3L subunits and provide a new strategy to improve kojic acid production in A. oryzae.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient genome engineering in Mycolicibacterium neoaurum using Cas9 from Streptococcus thermophilus. 利用嗜热链球菌的 Cas9 在新牛磺酸霉菌中进行高效基因组工程。
IF 2 4区 生物学
Biotechnology Letters Pub Date : 2024-07-31 DOI: 10.1007/s10529-024-03519-7
Gedan Xiang, Tao Liu, Lekai Li, Guihong Lin, Ke Liu, Fengqing Wang
{"title":"Efficient genome engineering in Mycolicibacterium neoaurum using Cas9 from Streptococcus thermophilus.","authors":"Gedan Xiang, Tao Liu, Lekai Li, Guihong Lin, Ke Liu, Fengqing Wang","doi":"10.1007/s10529-024-03519-7","DOIUrl":"https://doi.org/10.1007/s10529-024-03519-7","url":null,"abstract":"<p><p>Non-pathogenic mycobacteria, including Mycolicibacterium neoaurum, can directly utilize phytosterols for large-scale industrial production of steroid medicine intermediates due to their natural steroid metabolism pathway. The targeted genetic modification of M. neoaurum is conducive to the selection of high-yield engineering bacteria with high-value-added product, such as Pregnadien-20-carboxylic acid (PDC), which is an important precursor for synthesizing some corticosteroids. Based on heterologous type II CRISPR/sth1Cas9 system, a simple strategy was developed to genetic engineer M. neoaurum genome. Here, a customizable plasmid tool pMSC9 was constructed from pMV261 with integration of sth1Cas9 protein and corresponding sgRNA scaffold. Subsequently, the pMSC9 was inserted with spacer sequences corresponding to different targeted genes, generating editing plasmids, and then transformed into M. neoaurum. As a result, the targeted genes were introduced with DNA double stand breaks (DSBs) by CRISPR/sth1Cas9 system and then repaired by innate non-homologous end-joining (NHEJ) mechanism. Finally, editing plasmids were cured from correctly edited M. neoaurum mutants by means of no resistance cultivation, and the resulting mutant deleting the one target gene was used as the host to which another target gene could be deleted via the same process. This study demonstrated that the CRISPR/sth1Cas9 tool allowed M. neoaurum strains to be rapidly edited. And the editing mode of CRISPR/sth1Cas9 system indicated that this tool was an important supplement to the gene editing toolbox of M. neoaurum.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple genes deletion based on Cre-loxP marker-less gene deletion system for the strains from the genus of Pectobacterium. 基于 Cre-loxP 无标记基因缺失系统的果胶杆菌属菌株的多基因缺失。
IF 2 4区 生物学
Biotechnology Letters Pub Date : 2024-07-31 DOI: 10.1007/s10529-024-03518-8
Shu Che, Yuanxu Zhuo, Liping Yang, Huan Wang, Zhongli Cui, Jiaqin Fan
{"title":"Multiple genes deletion based on Cre-loxP marker-less gene deletion system for the strains from the genus of Pectobacterium.","authors":"Shu Che, Yuanxu Zhuo, Liping Yang, Huan Wang, Zhongli Cui, Jiaqin Fan","doi":"10.1007/s10529-024-03518-8","DOIUrl":"https://doi.org/10.1007/s10529-024-03518-8","url":null,"abstract":"<p><strong>Objective: </strong>To introduce the Cre-loxP system for constructing marker-less multiple-gene deletion mutants in Pectobacterium, overcoming limitations of antibiotic markers and enhancing the understanding of pathogenic mechanisms.</p><p><strong>Results: </strong>Firstly, a plasmid named pEX18-Cre, containing a sacB sucrose suicide gene, was constructed to express Cre recombinase in Pectobacterium. Secondly, a mutant in which the loxP-Km fragment replaced the target gene was obtained through homologous recombination double-crossover with the chromosome. Finally, pEX18-Cre was introduced into the mutant to excise the DNA between the loxP sites, thereby removing the markers and achieving multiple gene deletions. By utilizing the Cre-loxP system, we successfully constructed multiple marker-less gene deletion mutants in Pectobacterium strains.</p><p><strong>Conclusions: </strong>The Cre-loxP system efficiently creates marker-less multiple-gene deletion mutants, enhancing the study of Pectobacterium pathogenic mechanisms by overcoming antibiotic marker limitations.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant production of recombinant antigens containing the receptor binding domain (RBD) of two SARS-CoV-2 variants 用植物生产含有两种 SARS-CoV-2 变体受体结合域 (RBD) 的重组抗原
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-07-27 DOI: 10.1007/s10529-024-03517-9
Flavia Fagiani, Rachele Frigerio, Anna Maria Salzano, Andrea Scaloni, Carla Marusic, Marcello Donini
{"title":"Plant production of recombinant antigens containing the receptor binding domain (RBD) of two SARS-CoV-2 variants","authors":"Flavia Fagiani, Rachele Frigerio, Anna Maria Salzano, Andrea Scaloni, Carla Marusic, Marcello Donini","doi":"10.1007/s10529-024-03517-9","DOIUrl":"https://doi.org/10.1007/s10529-024-03517-9","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>The aim of this work was to rapidly produce in plats two recombinant antigens (RBDw-Fc and RBDo-Fc) containing the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 variants Wuhan and Omicron as fusion proteins to the Fc portion of a murine IgG2a antibody constant region (Fc).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The two recombinant antigens were expressed in <i>Nicotiana benthamiana</i> plants, engineered to avoid the addition of N-linked plant-typical sugars, through vacuum agroinfiltration and showed comparable purification yields (about 35 mg/kg leaf fresh weight).</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Their Western blotting and Coomassie staining evidenced the occurrence of major <i>in planta</i> proteolysis in the region between the RBD and Fc, which was particularly evident in RBDw-Fc, the only antigen bearing the HRV 3C cysteine protease recognition site. The two RBD N-linked glycosylation sites showed very homogeneous profiles free from plant-typical sugars, with the most abundant glycoform represented by the complex sugar GlcNAc<sub>4</sub>Man<sub>3</sub>. Both antigens were specifically recognised in Western Blot analysis by the anti-SARS-CoV-2 human neutralizing monoclonal antibody J08-MUT and RBDw-Fc was successfully used in competitive ELISA experiments for binding to the angiotensin-converting enzyme 2 receptor to verify the neutralizing capacity of the serum from vaccinated patients. Both SARS-Cov-2 antigens fused to a murine Fc region were rapidly and functionally produced in plants with potential applications in diagnostics.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced hypoxanthine utilization for cAMP salvage synthesis efficiently by Arthrobacter sp. CCTCC 2013431 via xanthine oxidase inhibition 节杆菌 CCTCC 2013431 通过抑制黄嘌呤氧化酶提高利用次黄嘌呤合成 cAMP 的效率
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-07-27 DOI: 10.1007/s10529-024-03513-z
Baofeng Chen, Hai Tan, Chang Li, Linbo Li, Zhonghua Zhang, Zhigang Li
{"title":"Enhanced hypoxanthine utilization for cAMP salvage synthesis efficiently by Arthrobacter sp. CCTCC 2013431 via xanthine oxidase inhibition","authors":"Baofeng Chen, Hai Tan, Chang Li, Linbo Li, Zhonghua Zhang, Zhigang Li","doi":"10.1007/s10529-024-03513-z","DOIUrl":"https://doi.org/10.1007/s10529-024-03513-z","url":null,"abstract":"<p>When hypoxanthine was utilized as the activator for the salvage pathway in cAMP synthesis, xanthine oxidase would generate in quantity leading to low hypoxanthine conversion ratios and cell viability. To enhance cAMP salvage synthesis, fermentations with citrate/luteolin and hypoxanthine coupling added were conducted in a 7 L bioreactor and then multiple physiological indicators of fermentation with luteolin addition were assayed. Due to hypoxanthine feeding, cAMP productivity reached 0.066 g/(L·h) with 43.5% higher than control, however, cAMP synthesis, cell growth and glucose uptake all ceased at 50 h which was shortened by 22 h in comparison to control. The addition of citrate resulted in the cessation of fermentation at 61 h, on the contrary, owing to luteolin addition, cAMP fermentation performance was enhanced significantly during the whole fermentation period (72 h) with higher hypoxanthine conversion ratios and cAMP contents when compared with citrate and only hypoxanthine added batches. Multiple physiological indicators revealed that luteolin inhibited xanthine oxidase activity reducing hypoxanthine decomposition and ROS generation. ATP/AMP, NADH/NAD<sup>+</sup> and NADPH/NADP<sup>+</sup> were significantly increased especially at the late phase. Moreover, HPRT, PUP expression contents and corresponding gene transcription levels were also elevated. Luteolin could inhibit xanthine oxidase activity and further decrease hypoxanthine decomposition and ROS generation leading to higher hypoxanthine conversion and less cell damage for cAMP salvage synthesis efficiently.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of a semi-continuous scale-down clone screening model for intensified perfusion culture 为强化灌注培养建立半连续缩减克隆筛选模型
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-07-27 DOI: 10.1007/s10529-024-03512-0
Tao Sun, Yu Zhang, Hengrui Liang, Wenjing Fang, Zichen Qian, Kee Wee Tan, Junjie Li, Xiang Zheng, Mingyue Fang, Hang Zhou, Weichang Zhou, Sam Zhang
{"title":"Establishment of a semi-continuous scale-down clone screening model for intensified perfusion culture","authors":"Tao Sun, Yu Zhang, Hengrui Liang, Wenjing Fang, Zichen Qian, Kee Wee Tan, Junjie Li, Xiang Zheng, Mingyue Fang, Hang Zhou, Weichang Zhou, Sam Zhang","doi":"10.1007/s10529-024-03512-0","DOIUrl":"https://doi.org/10.1007/s10529-024-03512-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Perfusion cultures have been extensively used in the biotechnology industry to achieve high yields of recombinant products, especially those with stability issue. The WuXiUP™ platform represents a novel intensified perfusion that can achieve ultra‐high productivity. This study describes a representative scale-down 24-deep well plate (24-DWP) cell culture model for intensified perfusion clone screening.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Clonal cell lines were expanded and evaluated in 24-DWP semi-continuous culture. Cell were sampled and counted daily with the aid of an automated liquid handler and high-throughput cell counter. To mimic perfusion culture, 24-DWP plates were spun down and resuspended with fresh medium daily. Top clones were ranked based on growth profiles and productivities. The best performing clones were evaluated on bioreactors.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The selected clones achieved volumetric productivity (Pv) up to 5 g/L/day when expressing a monoclonal antibody, with the accumulative harvest Pv exceeding 60 g/L in a 21-day cell culture. Product quality attributes of clones cultured in 24-DWP were comparable with those from bioreactors. A high seeding strategy further shortened the clone screening timeline.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>In this study, a 24-DWP semi-continuous scale-down model was successfully developed to screen for cell lines suitable for intensified perfusion culture.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Native CRISPR-Cas-based programmable multiplex gene repression in Klebsiella variicola 变异克雷伯氏菌中基于 CRISPR-Cas 的原生可编程多重基因抑制
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-07-27 DOI: 10.1007/s10529-024-03516-w
Zhifeng Mo, Siying Lin, Ting Li, Guohui Yu, Yunhao Sun, Jianuan Zhou, Zeling Xu
{"title":"Native CRISPR-Cas-based programmable multiplex gene repression in Klebsiella variicola","authors":"Zhifeng Mo, Siying Lin, Ting Li, Guohui Yu, Yunhao Sun, Jianuan Zhou, Zeling Xu","doi":"10.1007/s10529-024-03516-w","DOIUrl":"https://doi.org/10.1007/s10529-024-03516-w","url":null,"abstract":"<p><i>Klebsiella variicola</i> is a Gram-negative bacterium that is frequently isolated from a wide variety of natural niches. It is a ubiquitous opportunistic pathogen that can cause diverse infections in plants, animals, and humans. It also has significant biotechnological potential. However, due to the lack of efficient genetic tools, the molecular basis contributing to the pathogenesis and beneficial activities of <i>K. variicola</i> remains poorly understood. In this study, we found and characterized a native type I-E CRISPR-Cas system in a recently isolated <i>K. variicola</i> strain KV-1. The system cannot cleave target DNA sequences due to the inactivation of the Cas3 nuclease by a transposable element but retains the activity of the crRNA-guided Cascade binding to the target DNA sequence. A targeting plasmid carrying a mini-CRISPR to encode a crRNA was designed and introduced into the KV-1 strain, which successfully repurposed the native type I-E CRISPR-Cas system to inhibit the expression of the target gene efficiently and specifically. Moreover, by creating a mini-CRISPR to encode multiple crRNAs, multiplex gene repression was achieved by providing a single targeting plasmid. This work provides the first native CRISPR-Cas-based tool for programmable multiplex gene repression in <i>K. variicola</i>, which will facilitate studying the pathogenic mechanism of <i>K. variicola</i> and enable metabolic engineering to produce valuable bioproducts.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation. 通过简化处理和优化补铁,在烧瓶发酵过程中高产生产磁螺菌菌株 AMB-1 的磁小体。
IF 2 4区 生物学
Biotechnology Letters Pub Date : 2024-07-20 DOI: 10.1007/s10529-024-03507-x
Yu Wang, Zhengyi Liu, Wenjun Li, Hongli Cui, Yandi Huang, Song Qin
{"title":"High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation.","authors":"Yu Wang, Zhengyi Liu, Wenjun Li, Hongli Cui, Yandi Huang, Song Qin","doi":"10.1007/s10529-024-03507-x","DOIUrl":"https://doi.org/10.1007/s10529-024-03507-x","url":null,"abstract":"<p><strong>Objectives: </strong>Developing a simplified flask fermentation strategy utilizing magnetotactic bacterium AMB-1 and optimized iron supplementation for high-yield magnetosome production to address the challenges associated with magnetosome acquisition.</p><p><strong>Results: </strong>A reliable processing for the pure culture of AMB-1 was established using standard laboratory consumables and equipment. Subsequently, the medium and iron supplementation were optimized to enhance the yield of AMB-1 magnetosomes. The mSLM supported higher biomass accumulation in flask fermentation, reaching an OD<sub>565</sub> of ~ 0.7. The premixed solution of ferric quinate and EDTA-Fe (at a ratio of 0.5:0.5 and a concentration of 0.4 mmol/L) stabilized Fe<sup>3+</sup> and significantly increased the reductase activity of AMB-1. Flask fermentations with an initial volume of 15 L were then conducted employing the optimized fermentation strategy. After two rounds of iron and nutrient supplementation, the magnetosome yield reached 185.7 ± 9.5 mg/batch (approximately 12 mg/L), representing the highest AMB-1 flask fermentation yield to our knowledge.</p><p><strong>Conclusion: </strong>A flask fermentation strategy for high-yield magnetsome production was developed, eliminating the need for bioreactors and greatly simplifying the process of magnetosome acquisition.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redifferentiation of genetically modified dedifferentiated chondrocytes in a microcavitary hydrogel. 转基因再分化软骨细胞在微腔水凝胶中的再分化。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-06-01 Epub Date: 2024-03-25 DOI: 10.1007/s10529-024-03475-2
Yongchang Yao, Ke Chen, Qian Pan, Hui Gao, Weixian Su, Shicong Zheng, Weiqiang Dong, Dongyang Qian
{"title":"Redifferentiation of genetically modified dedifferentiated chondrocytes in a microcavitary hydrogel.","authors":"Yongchang Yao, Ke Chen, Qian Pan, Hui Gao, Weixian Su, Shicong Zheng, Weiqiang Dong, Dongyang Qian","doi":"10.1007/s10529-024-03475-2","DOIUrl":"10.1007/s10529-024-03475-2","url":null,"abstract":"<p><strong>Objectives: </strong>We genetically modified dedifferentiated chondrocytes (DCs) using lentiviral vectors and adenoviral vectors encoding TGF-β3 (referred to as transgenic groups below) and encapsulated these DCs in the microcavitary hydrogel and investigated the combinational effect on redifferentiation of the genetically manipulated DCs.</p><p><strong>Results: </strong>The Cell Counting Kit-8 data indicated that both transgenic groups exhibited significantly higher cell viability in the first week but inferior cell viability in the subsequent timepoints compared with those of the control group. Real-time polymerase chain reaction and western blot analysis results demonstrated that both transgenic groups had a better effect on redifferentiation to some extent, as evidenced by higher expression levels of chondrogenic genes, suggesting the validity of combination with transgenic DCs and the microcavitary hydrogel on redifferentiation. Although transgenic DCs with adenoviral vectors presented a superior extent of redifferentiation, they also expressed greater levels of the hypertrophic gene type X collagen. It is still worth further exploring how to deliver TGF-β3 more efficiently and optimizing the appropriate parameters, including concentration and duration.</p><p><strong>Conclusions: </strong>The results demonstrated the better redifferentiation effect of DCs with the combinational use of transgenic TGF-β3 and a microcavitary alginate hydrogel and implied that DCs would be alternative seed cells for cartilage tissue engineering due to their easily achieved sufficient cell amounts through multiple passages and great potential to redifferentiate to produce cartilaginous extracellular matrix.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANCUT1, a novel thermoalkaline cutinase from Aspergillus nidulans and its application on hydroxycinnamic acids lipophilization. 来自裸曲霉的新型热碱性角叉菜酶 ANCUT1 及其在羟基肉桂酸脂化中的应用
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-06-01 Epub Date: 2024-02-28 DOI: 10.1007/s10529-024-03467-2
Carolina Peña-Montes, Eva Bermúdez-García, Denise Castro-Ochoa, Fernanda Vega-Pérez, Katia Esqueda-Domínguez, José Augusto Castro-Rodríguez, Augusto González-Canto, Laura Segoviano-Reyes, Arturo Navarro-Ocaña, Amelia Farrés
{"title":"ANCUT1, a novel thermoalkaline cutinase from Aspergillus nidulans and its application on hydroxycinnamic acids lipophilization.","authors":"Carolina Peña-Montes, Eva Bermúdez-García, Denise Castro-Ochoa, Fernanda Vega-Pérez, Katia Esqueda-Domínguez, José Augusto Castro-Rodríguez, Augusto González-Canto, Laura Segoviano-Reyes, Arturo Navarro-Ocaña, Amelia Farrés","doi":"10.1007/s10529-024-03467-2","DOIUrl":"10.1007/s10529-024-03467-2","url":null,"abstract":"<p><p>One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信