{"title":"嗜钙芽孢杆菌RecJ (BaRecJ)可以驱动酿酒酵母的适应性进化。","authors":"Jixiang Shang, Yanchao Zhang, Zongjun Xu, Shouqing Zhang, Zhongtao Sun, Minggang Zheng","doi":"10.1007/s10529-024-03552-6","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous advancement of technologies such as microbial cultivation, DNA sequencing, bioinformatics, and genetic engineering, in vivo mutagenesis methods based on perturbation factors are now widely utilized. We identified a RecJ enzyme (BaRecJ) with endonuclease and exonuclease activities from Bacillus alcalophilus, and established a broad-spectrum mutagenic method based on the endonuclease and exonuclease activities of BaRecJ. The BaRecJ mutagenesis method was applied to S cerevisiae to enhance its ethanol or acetic acid tolerance, resulting in mutant strains with improved fermentation performance. Genomic resequencing analysis summarized genes possibly associated with the tolerance of mutants. BaRecJ mutagenesis method not only holds immense potential in microbial mutagenesis breeding and adaptive evolution but also, when coupled with genomic resequencing, allows for the rapid identification of candidate genetic loci associated with specific traits.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 4","pages":"80"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacillus alcalophilus RecJ (BaRecJ) can drive the adaptive evolution of S. cerevisiae.\",\"authors\":\"Jixiang Shang, Yanchao Zhang, Zongjun Xu, Shouqing Zhang, Zhongtao Sun, Minggang Zheng\",\"doi\":\"10.1007/s10529-024-03552-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the continuous advancement of technologies such as microbial cultivation, DNA sequencing, bioinformatics, and genetic engineering, in vivo mutagenesis methods based on perturbation factors are now widely utilized. We identified a RecJ enzyme (BaRecJ) with endonuclease and exonuclease activities from Bacillus alcalophilus, and established a broad-spectrum mutagenic method based on the endonuclease and exonuclease activities of BaRecJ. The BaRecJ mutagenesis method was applied to S cerevisiae to enhance its ethanol or acetic acid tolerance, resulting in mutant strains with improved fermentation performance. Genomic resequencing analysis summarized genes possibly associated with the tolerance of mutants. BaRecJ mutagenesis method not only holds immense potential in microbial mutagenesis breeding and adaptive evolution but also, when coupled with genomic resequencing, allows for the rapid identification of candidate genetic loci associated with specific traits.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 4\",\"pages\":\"80\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-024-03552-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03552-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bacillus alcalophilus RecJ (BaRecJ) can drive the adaptive evolution of S. cerevisiae.
With the continuous advancement of technologies such as microbial cultivation, DNA sequencing, bioinformatics, and genetic engineering, in vivo mutagenesis methods based on perturbation factors are now widely utilized. We identified a RecJ enzyme (BaRecJ) with endonuclease and exonuclease activities from Bacillus alcalophilus, and established a broad-spectrum mutagenic method based on the endonuclease and exonuclease activities of BaRecJ. The BaRecJ mutagenesis method was applied to S cerevisiae to enhance its ethanol or acetic acid tolerance, resulting in mutant strains with improved fermentation performance. Genomic resequencing analysis summarized genes possibly associated with the tolerance of mutants. BaRecJ mutagenesis method not only holds immense potential in microbial mutagenesis breeding and adaptive evolution but also, when coupled with genomic resequencing, allows for the rapid identification of candidate genetic loci associated with specific traits.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.