Biotechnology Letters最新文献

筛选
英文 中文
Production of bilirubin via whole-cell transformation utilizing recombinant Corynebacterium glutamicum expressing a β-glucuronidase from Staphylococcus sp. RLH1. 利用重组谷氨酸棒杆菌表达来自葡萄球菌 RLH1 的 β-葡萄糖醛酸酶,通过全细胞转化生产胆红素。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-02-04 DOI: 10.1007/s10529-024-03468-1
Wei Zhou, Yanan Cui, Mengyun Chen, Qijun Gao, Kai Bao, Yongzhong Wang, Min Zhang
{"title":"Production of bilirubin via whole-cell transformation utilizing recombinant Corynebacterium glutamicum expressing a β-glucuronidase from Staphylococcus sp. RLH1.","authors":"Wei Zhou, Yanan Cui, Mengyun Chen, Qijun Gao, Kai Bao, Yongzhong Wang, Min Zhang","doi":"10.1007/s10529-024-03468-1","DOIUrl":"10.1007/s10529-024-03468-1","url":null,"abstract":"<p><p>Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a β-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg<sup>2+</sup> and 6 mM antioxidant NaHSO<sub>3</sub> after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"223-233"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic cultivation of human mesenchymal stem/stromal cells for the production of extracellular vesicles in a 3D bioreactor system. 在三维生物反应器系统中动态培养人类间充质干细胞/基质细胞以生产细胞外囊泡。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-02-13 DOI: 10.1007/s10529-024-03465-4
Ciarra Almeria, René Weiss, Maike Keck, Viktoria Weber, Cornelia Kasper, Dominik Egger
{"title":"Dynamic cultivation of human mesenchymal stem/stromal cells for the production of extracellular vesicles in a 3D bioreactor system.","authors":"Ciarra Almeria, René Weiss, Maike Keck, Viktoria Weber, Cornelia Kasper, Dominik Egger","doi":"10.1007/s10529-024-03465-4","DOIUrl":"10.1007/s10529-024-03465-4","url":null,"abstract":"<p><strong>Purpose: </strong>3D cell culture and hypoxia have been demonstrated to increase the therapeutic effects of mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs). In this study, a process for the production of MSC-EVs in a novel 3D bioreactor system under normoxic and hypoxic conditions was established and the resulting EVs were characterized.</p><p><strong>Methods: </strong>Human adipose-derived MSCs were seeded and cultured on a 3D membrane in the VITVO® bioreactor system for 7 days. Afterwards, MSC-EVs were isolated and characterized via fluorescence nanoparticle tracking analysis, flow cytometry with staining against annexin V (Anx5) as a marker for EVs exposing phosphatidylserine, as well as CD73 and CD90 as MSC surface markers.</p><p><strong>Results: </strong>Cultivation of MSC in the VITVO® bioreactor system demonstrated a higher concentration of MSC-EVs from the 3D bioreactor (9.1 × 10<sup>9</sup> ± 1.5 × 10<sup>9</sup> and 9.7 × 10<sup>9</sup> ± 3.1 × 10<sup>9</sup> particles/mL) compared to static 2D culture (4.2 × 10<sup>9</sup> ± 7.5 × 10<sup>8</sup> and 3.9 × 10<sup>9</sup> ± 3.0 × 10<sup>8</sup> particles/mL) under normoxic and hypoxic conditions, respectively. Also, the particle-to-protein ratio as a measure for the purity of EVs increased from 3.3 × 10<sup>7</sup> ± 1.1 × 10<sup>7</sup> particles/µg protein in 2D to 1.6 × 10<sup>8</sup> ± 8.3 × 10<sup>6</sup> particles/µg protein in 3D. Total MSC-EVs as well as CD73<sup>-</sup>CD90<sup>+</sup> MSC-EVs were elevated in 2D normoxic conditions. The EV concentration and size did not differ significantly between normoxic and hypoxic conditions.</p><p><strong>Conclusion: </strong>The production of MSC-EVs in a 3D bioreactor system under hypoxic conditions resulted in increased EV concentration and purity. This system could be especially useful in screening culture conditions for the production of 3D-derived MSC-EVs.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"279-293"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging. 构建噬菌体载体,并将其应用于靶向给药和细胞成像。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-01-06 DOI: 10.1007/s10529-023-03455-y
Mehdi Sharifi, Ali Akbar Alizadeh, Maryam Hamzeh Mivehroud, Siavoush Dastmalchi
{"title":"Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging.","authors":"Mehdi Sharifi, Ali Akbar Alizadeh, Maryam Hamzeh Mivehroud, Siavoush Dastmalchi","doi":"10.1007/s10529-023-03455-y","DOIUrl":"10.1007/s10529-023-03455-y","url":null,"abstract":"<p><p>There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT<sub>2</sub> phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"147-159"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiation, maturation, and collection of THP-1-derived dendritic cells based on a PEG hydrogel culture platform. 基于 PEG 水凝胶培养平台的 THP-1 衍生树突状细胞的分化、成熟和收集。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-01-17 DOI: 10.1007/s10529-023-03457-w
Jaeho Choi, Chang Seok Ki
{"title":"Differentiation, maturation, and collection of THP-1-derived dendritic cells based on a PEG hydrogel culture platform.","authors":"Jaeho Choi, Chang Seok Ki","doi":"10.1007/s10529-023-03457-w","DOIUrl":"10.1007/s10529-023-03457-w","url":null,"abstract":"<p><strong>Purpose: </strong>Dendritic cell (DC) is a spearhead responsible for immune response and surrounded by extracellular matrix in three-dimensional (3D) tissue. Nevertheless, conventional DC culture has relied on suspension or two-dimensional (2D) tissue culture plate (TCP)-based culture system. This culture condition often fails to recapitulate the physiological behavior of DC in real tissue. In this work, the effect of culture condition on DC physiology was explored with varying 3D hydrogel property (i.e., degradability, adhesion, and stiffness). In particular, DC differentiation and maturation in 3D were evaluated comparing the conventional TCP-based culture condition.</p><p><strong>Method: </strong>THP-1 cells were encapsulated in poly(ethylene glycol) (PEG) hydrogel via thiol-ene photocrosslinking with non-degradable or proteolytically degradable peptide crosslinker. Hydrogel stiffness was manipulated by controlling the concentration of crosslinker. The metabolic activities and cytotoxicity of the encapsulated cells were measured by resazurin and Live/Dead assays, respectively. Cell harvesting was conducted via enzymatic degradation using α-chymotrypsin, and differentiation and maturation of the liberated DCs were evaluated by quantitative polymerase chain reaction and flow cytometry.</p><p><strong>Results: </strong>THP-1 cells well proliferated in the soft degradable hydrogel with a higher metabolic activity. However, the stiff matrix inhibited cell growth in 3D. The gene expression assay indicated that the 3D hydrogel condition was superior to 2D culture in terms of differentiation and maturation of DC. Interestingly, the stiffness of matrix was important factor in DC function. In the stiff hydrogel, the expression levels of differentiation and maturation markers were higher compared to the low stiffness hydrogel. The mature DCs caged in the hydrogel matrix were harvested after short enzymatic digestion of hydrogel and the liberated cells had over 90% viability. The flow cytometric result revealed that the proportion of CD80 + /CD86 + cells from the stiff hydrogel was relatively higher than cells either from 2D or soft hydrogel in 3D.</p><p><strong>Conclusion: </strong>The collected evidence indicated that the proteolytically degradable PEG hydrogel matrix promoted DC differentiation and maturation. In addition, the matrix stiffness control could manipulate the marker expressions of differentiation and maturation. Particularly, the mature DC was successfully collected from the hydrogel matrix. These results highlighted the PEG hydrogel-based DC culture might be a useful tool for potential DC-based immunotherapies.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"235-247"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery, structural characterization, and functional insights into a novel apiosidase from the GH140 family, isolated from a lignocellulolytic-enriched mangrove microbial community. 从富含木质纤维素分解酶的红树林微生物群落中分离出的 GH140 家族中的一种新型芹菜苷酶的发现、结构特征和功能研究。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-01-27 DOI: 10.1007/s10529-023-03460-1
Marcelo Vizona Liberato, Douglas Antonio Alvaredo Paixao, Geizecler Tomazetto, Didier Ndeh, David N Bolam, Fabio Marcio Squina
{"title":"Discovery, structural characterization, and functional insights into a novel apiosidase from the GH140 family, isolated from a lignocellulolytic-enriched mangrove microbial community.","authors":"Marcelo Vizona Liberato, Douglas Antonio Alvaredo Paixao, Geizecler Tomazetto, Didier Ndeh, David N Bolam, Fabio Marcio Squina","doi":"10.1007/s10529-023-03460-1","DOIUrl":"10.1007/s10529-023-03460-1","url":null,"abstract":"<p><strong>Objectives: </strong>Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase.</p><p><strong>Results: </strong>The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions.</p><p><strong>Conclusion: </strong>This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"201-211"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139568923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silica nanoparticles enhance the cyto- and hemocompatibility of a multilayered extracellular matrix scaffold for vascular tissue regeneration. 二氧化硅纳米颗粒增强了用于血管组织再生的多层细胞外基质支架的细胞和血液相容性。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-01-27 DOI: 10.1007/s10529-023-03459-8
Leslie A Goldberg, Helena D Zomer, Calum McFetridge, Peter S McFetridge
{"title":"Silica nanoparticles enhance the cyto- and hemocompatibility of a multilayered extracellular matrix scaffold for vascular tissue regeneration.","authors":"Leslie A Goldberg, Helena D Zomer, Calum McFetridge, Peter S McFetridge","doi":"10.1007/s10529-023-03459-8","DOIUrl":"10.1007/s10529-023-03459-8","url":null,"abstract":"<p><strong>Purpose: </strong>The limited availability of autologous vessels for vascular bypass surgeries is a major roadblock to treating severe cardiovascular diseases. Based on this clinical priority, our group has developed a novel engineered vascular graft by rolling human amniotic membranes into multilayered extracellular matrixes (ECM). When treated with silica nanoparticles (SiNP), these rolled scaffolds showed a significant improvement in their structural and mechanical properties, matching those from gold standard autologous grafts. However, it remained to be determined how cells respond to SiNP-treated materials. As a first step toward understanding the biocompatibility of SiNP-dosed biomaterials, we aimed to assess how endothelial cells and blood components interact with SiNP-treated ECM scaffolds.</p><p><strong>Methods: </strong>To test this, we used established in vitro assays to study SiNP and SiNP-treated scaffolds' cyto and hemocompatibility.</p><p><strong>Results: </strong>Our results showed that SiNP effects on cells were concentration-dependent with no adverse effects observed up to 10 μg/ml of SiNP, with higher concentrations inducing cytotoxic and hemolytic responses. The SiNP also enhanced the scaffold's hydrophobicity state, a feature known to inhibit platelet and immune cell adhesion. Accordingly, SiNP-treated scaffolds were also shown to support endothelial cell growth while preventing platelet and leukocyte adhesion.</p><p><strong>Conclusion: </strong>Our findings suggest that the addition of SiNP to human amniotic membrane extracellular matrixes improves the cyto- and hemocompatibility of rolled scaffolds and highlights this strategy as a robust mechanism to stabilize layered collagen scaffolds for vascular tissue regeneration.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"249-261"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139566488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of a combined electrotrophic and electrogenic biofilm operated under long-term, continuous cycling. 在长期、连续循环条件下运行的电营养生物膜和电生化生物膜的性能。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-02-01 DOI: 10.1007/s10529-023-03450-3
Matthew D Yates, Rebecca L Mickol, Amelia Vignola, Jeffrey W Baldwin, Sarah M Glaven, Leonard M Tender
{"title":"Performance of a combined electrotrophic and electrogenic biofilm operated under long-term, continuous cycling.","authors":"Matthew D Yates, Rebecca L Mickol, Amelia Vignola, Jeffrey W Baldwin, Sarah M Glaven, Leonard M Tender","doi":"10.1007/s10529-023-03450-3","DOIUrl":"10.1007/s10529-023-03450-3","url":null,"abstract":"<p><strong>Objectives: </strong>Evaluate electrochemically active biofilms as high energy density rechargeable microbial batteries toward providing persistent power in applications where traditional battery technology is limiting (, remote monitoring applications).</p><p><strong>Results: </strong>Here we demonstrated that an electrochemically active biofilm was able to store and release electrical charge for alternating charge/discharge cycles of up to 24 h periodicity (50% duty cycle) with no significant decrease in average current density (0.16 ± 0.04 A/m<sup>2</sup>) for over 600 days. However, operation at 24 h periodicity for > 50 days resulted in a sharp decrease in the current to nearly zero. This current crash was recoverable by decreasing the periodicity. Overall, the coulombic efficiency remained near unity within experimental error (102 ± 3%) for all of the tested cycling periods. Electrochemical characterization here suggests that electron transfer occurs through multiple routes, likely a mixture of direct and mediated mechanisms.</p><p><strong>Conclusions: </strong>These results indicate that bidirectional electrogenic/electrotrophic biofilms are capable of efficient charge storage/release over a wide range of cycling frequency and may eventually enable development of sustainable, high energy density rechargeable batteries.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"213-221"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of magnesium oxide nanoparticles and LED irradiation on the viability and differentiation of human stem cells of the apical papilla. 氧化镁纳米颗粒和 LED 照射对根尖乳头人类干细胞活力和分化的影响。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-02-08 DOI: 10.1007/s10529-024-03471-6
Hamed Karkehabadi, Afsaneh Rahmati, Hadiseh Abbaspourrokni, Abbas Farmany, Rezvan Najafi, Rooholah Behroozi, Loghman Rezaei-Soufi, Roshanak Abbasi
{"title":"Effect of magnesium oxide nanoparticles and LED irradiation on the viability and differentiation of human stem cells of the apical papilla.","authors":"Hamed Karkehabadi, Afsaneh Rahmati, Hadiseh Abbaspourrokni, Abbas Farmany, Rezvan Najafi, Rooholah Behroozi, Loghman Rezaei-Soufi, Roshanak Abbasi","doi":"10.1007/s10529-024-03471-6","DOIUrl":"10.1007/s10529-024-03471-6","url":null,"abstract":"<p><strong>Purpose: </strong>Currently, regenerative endodontic treatments are gaining more and more attention, and stem cells play a significant role in these treatments. In order to enhance stem cell proliferation and differentiation, a variety of methods and materials have been used. The purpose of this study was to determine the effects of magnesium oxide nanoparticles and LED irradiation on the survival and differentiation of human stem cells from apical papilla.</p><p><strong>Methods: </strong>The MTT test was used to measure the cell survival of SCAPs that had been exposed to different concentrations of magnesium oxide nanoparticles after 24 and 48 h, and the concentration with the highest cell survival rate was picked for further studies. The cells were classified into four distinct groups based on their treatment: (1) control, which received no exposure, (2) exposure to magnesium oxide nanoparticles, (3) exposure to light emitting diode (LED) irradiation (635 nm, 200 mW/cm<sup>2</sup>) for 30 s, (4) exposure simultaneously with magnesium oxide nanoparticles and LED irradiation. A green approach was employed to synthesize magnesium oxide nanoparticles. Quantitative real time PCR was used to measure the gene expression of osteo/odontogenic markers such as BSP, DSPP, ALP and DMP1 in all four groups after treatment, and Alizarin red S staining (ARS) was used to determine the osteogenic differentiation of SCAPs by demonstrating the Matrix mineralization.</p><p><strong>Results: </strong>The highest viability of SCAPs was observed after 24 h in concentration 1 and 10 µg/mL and after 48 h in concentration 1 µg/mL, which were not significantly different from the control group. In both times, the survival of SCAPs decreased with increasing concentration of magnesium oxide nanoparticles (MgONPs). According to the results of Real-time PCR, after 24 and 48 h, the highest differentiation of BSP, DMP1, ALP and DSPP genes was observed in the LED + MgONPs group, followed by MgONPs and then LED, and in all 3 experimental groups, it was significantly higher than control group (P < 0.05). Also, after 24 and 48 h, the density of ARS increased in all groups compared to the control group, and the highest density was observed in the MgONPs + LED and MgONPs groups.</p><p><strong>Conclusion: </strong>This research concluded that exposure to SCAPs, MgONPs, and LED irradiation has a significant effect on enhancing gene expression of odontogenic/osteogenic markers and increasing matrix mineralization.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"263-278"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139701702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient biosynthesis of salidroside by a UDP-glucosyltransferase-catalyzed cascade reaction. 通过 UDP-葡萄糖基转移酶催化的级联反应高效生物合成水杨梅苷。
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-04-01 Epub Date: 2024-01-06 DOI: 10.1007/s10529-023-03453-0
Guosi Li, Qilin Xu, Nan Hu, Xinyang Liu, Yiqi Jiang, Hailong Xue, Yongjun Zang, Fucheng Zhu
{"title":"Highly efficient biosynthesis of salidroside by a UDP-glucosyltransferase-catalyzed cascade reaction.","authors":"Guosi Li, Qilin Xu, Nan Hu, Xinyang Liu, Yiqi Jiang, Hailong Xue, Yongjun Zang, Fucheng Zhu","doi":"10.1007/s10529-023-03453-0","DOIUrl":"10.1007/s10529-023-03453-0","url":null,"abstract":"<p><strong>Objective: </strong>Salidroside is an important plant-derived aromatic compound with diverse biological properties. The main objective of this study was to synthesize salidroside from tyrosol using UDP-glucosyltransferase (UGT) with in situ regeneration of UDP-glucose (UDPG).</p><p><strong>Results: </strong>The UDP-glucosyltransferase 85A1 (UGT85A1) from Arabidopsis thaliana, which showed high activity and regioselectivity towards tyrosol, was selected for the production of salidroside. Then, an in vitro cascade reaction for in situ regeneration of UDPG was constructed by coupling UGT85A1 to sucrose synthase from Glycine max (GmSuSy). The optimal UGT85A1-GmSuSy activity ratio of 1:2 was determined to balance the efficiency of salidroside production and UDP-glucose regeneration. Different cascade reaction conditions for salidroside production were also determined. Under the optimized condition, salidroside was produced at a titer of 6.0 g/L with a corresponding molar conversion of 99.6% and a specific productivity of 199.1 mg/L/h in a continuous feeding reactor.</p><p><strong>Conclusion: </strong>This is the highest salidroside titer ever reported so far using biocatalytic approach.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"173-181"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico designing of novel epitope-based peptide vaccines against HIV-1 基于表位的新型多肽疫苗预防 HIV-1 的硅学设计
IF 2.7 4区 生物学
Biotechnology Letters Pub Date : 2024-02-26 DOI: 10.1007/s10529-023-03464-x
Fatemeh Heidarnejad, Ali Namvar, Seyed Mehdi Sadat, Parisa Moradi Pordanjani, Fatemeh Rezaei, Haideh Namdari, Sina Arjmand, Azam Bolhassani
{"title":"In silico designing of novel epitope-based peptide vaccines against HIV-1","authors":"Fatemeh Heidarnejad, Ali Namvar, Seyed Mehdi Sadat, Parisa Moradi Pordanjani, Fatemeh Rezaei, Haideh Namdari, Sina Arjmand, Azam Bolhassani","doi":"10.1007/s10529-023-03464-x","DOIUrl":"https://doi.org/10.1007/s10529-023-03464-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the<i> N</i>-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"143 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信