用于灵敏 sEVs 分离和分析的固定耦合与适配体辅助双循环扩增技术

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yu He, Ying Ren, Jiawen Tang
{"title":"用于灵敏 sEVs 分离和分析的固定耦合与适配体辅助双循环扩增技术","authors":"Yu He, Ying Ren, Jiawen Tang","doi":"10.1007/s10529-024-03526-8","DOIUrl":null,"url":null,"abstract":"<p>Precise identification of small extracellular vesicles (sEVs) is crucial for improving disease diagnosis and treatments, such as bladder cancer. However, accurate isolation and simultaneously quantification of sEVs remain a huge challenge. We have introduced a new technique that combines immobilization with aptamer-assisted dual cycle amplification to isolate and analyze sEVs with high sensitivity. In this method, the CD9 protein antibody is attached to the plate’s surface for the initial identification of sEVs, while an aptamer probe is used to detect the exosomal surface protein CD63. We have created an sEVs-surface method that combines target recognition initiated signal recycling and rolling circle amplification (RCA) for signal amplification. This approach allows for the “AND” logic analysis of dual biomarkers, enabling both sEVs quantification and tracing. The proposed approach has a broad detection range and a low limit of detection. Moreover, the established method showed good stability in detecting sEVs with a low coefficient of variation. Our method can effectively isolate certain sEVs and accurately identify them, making it suitable for many uses in biological science, biomedical engineering, and personalized medicine.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilization coupling with aptamer assisted dual cycle amplification for sensitive sEVs isolation and analysis\",\"authors\":\"Yu He, Ying Ren, Jiawen Tang\",\"doi\":\"10.1007/s10529-024-03526-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precise identification of small extracellular vesicles (sEVs) is crucial for improving disease diagnosis and treatments, such as bladder cancer. However, accurate isolation and simultaneously quantification of sEVs remain a huge challenge. We have introduced a new technique that combines immobilization with aptamer-assisted dual cycle amplification to isolate and analyze sEVs with high sensitivity. In this method, the CD9 protein antibody is attached to the plate’s surface for the initial identification of sEVs, while an aptamer probe is used to detect the exosomal surface protein CD63. We have created an sEVs-surface method that combines target recognition initiated signal recycling and rolling circle amplification (RCA) for signal amplification. This approach allows for the “AND” logic analysis of dual biomarkers, enabling both sEVs quantification and tracing. The proposed approach has a broad detection range and a low limit of detection. Moreover, the established method showed good stability in detecting sEVs with a low coefficient of variation. Our method can effectively isolate certain sEVs and accurately identify them, making it suitable for many uses in biological science, biomedical engineering, and personalized medicine.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-024-03526-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03526-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精确鉴定细胞外小泡(sEVs)对于改善疾病诊断和治疗(如膀胱癌)至关重要。然而,精确分离和同时定量 sEVs 仍然是一个巨大的挑战。我们引入了一种新技术,它将固定化与适配体辅助双循环扩增相结合,以高灵敏度分离和分析 sEVs。在这种方法中,CD9 蛋白抗体被附着在平板表面,用于初步鉴定 sEVs,而适配体探针则用于检测外泌体表面蛋白 CD63。我们创建的 sEVs 表面检测方法结合了目标识别启动信号循环和滚动圈扩增(RCA)进行信号扩增。这种方法可对双重生物标记物进行 "AND "逻辑分析,实现 sEVs 定量和追踪。所提出的方法检测范围广,检测限低。此外,已建立的方法在检测 sEV 方面表现出良好的稳定性,变异系数低。我们的方法能有效地分离出某些 sEVs 并准确地识别它们,因此适用于生物科学、生物医学工程和个性化医疗等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Immobilization coupling with aptamer assisted dual cycle amplification for sensitive sEVs isolation and analysis

Immobilization coupling with aptamer assisted dual cycle amplification for sensitive sEVs isolation and analysis

Precise identification of small extracellular vesicles (sEVs) is crucial for improving disease diagnosis and treatments, such as bladder cancer. However, accurate isolation and simultaneously quantification of sEVs remain a huge challenge. We have introduced a new technique that combines immobilization with aptamer-assisted dual cycle amplification to isolate and analyze sEVs with high sensitivity. In this method, the CD9 protein antibody is attached to the plate’s surface for the initial identification of sEVs, while an aptamer probe is used to detect the exosomal surface protein CD63. We have created an sEVs-surface method that combines target recognition initiated signal recycling and rolling circle amplification (RCA) for signal amplification. This approach allows for the “AND” logic analysis of dual biomarkers, enabling both sEVs quantification and tracing. The proposed approach has a broad detection range and a low limit of detection. Moreover, the established method showed good stability in detecting sEVs with a low coefficient of variation. Our method can effectively isolate certain sEVs and accurately identify them, making it suitable for many uses in biological science, biomedical engineering, and personalized medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信