Bioscience Reports最新文献

筛选
英文 中文
Causal effects of gut microbiota on gout and hyperuricemia: insights from genome-wide Mendelian randomization, RNA-sequencing, 16S rRNA sequencing, and metabolomes. 肠道微生物群对痛风和高尿酸血症的因果效应:全基因组孟德尔随机化、RNA测序、16S rRNA测序和代谢组的启示。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-11-27 DOI: 10.1042/BSR20240595
Xia Liu, Zhe Feng, Fenglian Zhang, Bo Wang, Zhijuan Wei, Nanqing Liao, Min Zhang, Jian Liang, Lisheng Wang
{"title":"Causal effects of gut microbiota on gout and hyperuricemia: insights from genome-wide Mendelian randomization, RNA-sequencing, 16S rRNA sequencing, and metabolomes.","authors":"Xia Liu, Zhe Feng, Fenglian Zhang, Bo Wang, Zhijuan Wei, Nanqing Liao, Min Zhang, Jian Liang, Lisheng Wang","doi":"10.1042/BSR20240595","DOIUrl":"10.1042/BSR20240595","url":null,"abstract":"<p><strong>Background: </strong>This study investigated the causal relationship between gut microbiota (GM), serum metabolome, and host transcriptome in the development of gout and hyperuricemia (HUA) using genome-wide association studies (GWAS) data and HUA mouse model experiments.</p><p><strong>Methods: </strong>Mendelian randomization (MR) analysis of GWAS summary statistics was performed using an inverse variance weighted (IVW) approach to determine or predict the causal role of the GM on gout. The HUA mouse model was used to characterize changes in the gut microbiome, host metabolome, and host kidney transcriptome by integrating cecal 16S rRNA sequencing, untargeted serum metabolomics, and host mRNA sequencing.</p><p><strong>Results: </strong>Our analysis demonstrated causal effects of seven GM taxa on gout, including genera of Ruminococcus, Odoribacter, and Bacteroides. Thirty eight immune cell traits were associated with gout. Dysbiosis of Dubosiella, Lactobacillus, Bacteroides, Alloprevotella, and Lachnospiraceae_NK4A136_group genera were associated with changes in the serum metabolites and kidney transcriptome of the HUA model mice. The changes in the gut microbiome of the HUA model mice correlated significantly with alterations in the levels of serum metabolites such as taurodeoxycholic acid, phenylacetylglycine, vanylglycol, methyl hexadecanoic acid, carnosol, 6-aminopenicillanic acid, sphinganine, p-hydroxyphenylacetic acid, pyridoxamine, and de-o-methylsterigmatocystin, and expression of kidney genes such as CNDP2, SELENOP, TTR, CAR3, SLC12A3, SCD1, PIGR, CD74, MFSD4B5, and NAPSA.</p><p><strong>Conclusion: </strong>Our study demonstrated a causal relationship between GM, immune cells, and gout. HUA development involved alterations in the vitamin B6 metabolism because of GM dysbiosis that resulted in altered pyridoxamine and pyridoxal levels, dysregulated sphingolipid metabolism, and excessive inflammation.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: LncRNA MIR155HG contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-128-5p/BRD4 axis. 表达关注:LncRNA MIR155HG通过靶向miR-128-5p/BRD4轴导致与烟雾相关的慢性阻塞性肺病。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR-2019-2567_EOC
{"title":"Expression of Concern: LncRNA MIR155HG contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-128-5p/BRD4 axis.","authors":"","doi":"10.1042/BSR-2019-2567_EOC","DOIUrl":"10.1042/BSR-2019-2567_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-κB signaling pathway mediated inflammatory response. 表达关注:Apc 基因通过抑制 NF-κB 信号通路介导的炎症反应,抑制颅内动脉瘤的形成和破裂。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR-2018-1909_EOC
{"title":"Expression of Concern: Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-κB signaling pathway mediated inflammatory response.","authors":"","doi":"10.1042/BSR-2018-1909_EOC","DOIUrl":"10.1042/BSR-2018-1909_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress. C4 禾本科植物采用不同策略使 Rubisco 激活酶适应热胁迫
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240353
Sarah C Stainbrook, Lindsey N Aubuchon, Amanda Chen, Emily Johnson, Audrey Si, Laila Walton, Angela J Ahrendt, Daniela Strenkert, Joseph M Jez
{"title":"C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress.","authors":"Sarah C Stainbrook, Lindsey N Aubuchon, Amanda Chen, Emily Johnson, Audrey Si, Laila Walton, Angela J Ahrendt, Daniela Strenkert, Joseph M Jez","doi":"10.1042/BSR20240353","DOIUrl":"10.1042/BSR20240353","url":null,"abstract":"<p><p>Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction with IP6K1 supports pyrophosphorylation of substrate proteins by the inositol pyrophosphate 5-InsP7. 与 IP6K1 相互作用,支持肌醇焦磷酸 5-InsP7 对底物蛋白质进行焦磷酸化。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240792
Aisha Hamid, Jayashree S Ladke, Akruti Shah, Shubhra Ganguli, Monisita Pal, Arpita Singh, Rashna Bhandari
{"title":"Interaction with IP6K1 supports pyrophosphorylation of substrate proteins by the inositol pyrophosphate 5-InsP7.","authors":"Aisha Hamid, Jayashree S Ladke, Akruti Shah, Shubhra Ganguli, Monisita Pal, Arpita Singh, Rashna Bhandari","doi":"10.1042/BSR20240792","DOIUrl":"10.1042/BSR20240792","url":null,"abstract":"<p><p>Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the β subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice. GPR10 和 NPFFR2 受体的缺失会导致小鼠出现性别特异性糖尿病前期综合征和晚发性肥胖症。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20241103
Alena Morgan, Nivasini Shekhar, Veronika Strnadová, Zdenko Pirník, Eliška Haasová, Jan Kopecký, Andrea Pačesová, Blanka Železná, Jaroslav Kuneš, Kristina Bardová, Lenka Maletínská
{"title":"Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice.","authors":"Alena Morgan, Nivasini Shekhar, Veronika Strnadová, Zdenko Pirník, Eliška Haasová, Jan Kopecký, Andrea Pačesová, Blanka Železná, Jaroslav Kuneš, Kristina Bardová, Lenka Maletínská","doi":"10.1042/BSR20241103","DOIUrl":"10.1042/BSR20241103","url":null,"abstract":"<p><p>GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS. (E)-(2,4-二羟基)-a-氨基肉桂酸(一种羟基肉桂酸衍生物)对 TNBS 诱导的溃疡性结肠炎模型的保护作用。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240797
Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández
{"title":"Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS.","authors":"Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández","doi":"10.1042/BSR20240797","DOIUrl":"10.1042/BSR20240797","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells. 多酚黄酮类化合物鱼腥草素和槲皮素对人间质基质细胞脂肪分化的影响
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240623
Chanchao Lorthongpanich, Thanapon Charoenwongpaiboon, Praphasri Septham, Chuti Laowtammathron, Pimonwan Srisook, Pakpoom Kheolamai, Sirikul Manochantr, Surapol Issaragrisil
{"title":"Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells.","authors":"Chanchao Lorthongpanich, Thanapon Charoenwongpaiboon, Praphasri Septham, Chuti Laowtammathron, Pimonwan Srisook, Pakpoom Kheolamai, Sirikul Manochantr, Surapol Issaragrisil","doi":"10.1042/BSR20240623","DOIUrl":"10.1042/BSR20240623","url":null,"abstract":"<p><p>Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: miRNA-103 promotes chondrocyte apoptosis by downregulation of Sphingosine kinase-1 and ameliorates PI3K/AKT pathway in osteoarthritis. 关注表达:miRNA-103 通过下调鞘磷脂激酶-1 促进软骨细胞凋亡,并改善骨关节炎中的 PI3K/AKT 通路。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR-2019-1255_EOC
{"title":"Expression of Concern: miRNA-103 promotes chondrocyte apoptosis by downregulation of Sphingosine kinase-1 and ameliorates PI3K/AKT pathway in osteoarthritis.","authors":"","doi":"10.1042/BSR-2019-1255_EOC","DOIUrl":"10.1042/BSR-2019-1255_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: C1QTNF6 regulates cell proliferation and apoptosis of NSCLC in vitro and in vivo. 关注表达:C1QTNF6 在体外和体内调节 NSCLC 的细胞增殖和凋亡。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR-2020-1541_EOC
{"title":"Expression of Concern: C1QTNF6 regulates cell proliferation and apoptosis of NSCLC in vitro and in vivo.","authors":"","doi":"10.1042/BSR-2020-1541_EOC","DOIUrl":"10.1042/BSR-2020-1541_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信