{"title":"Retraction: Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.","authors":"","doi":"10.1042/BSR-2017-1551_RET","DOIUrl":"10.1042/BSR-2017-1551_RET","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 8","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis.","authors":"","doi":"10.1042/BSR-2018-1339_COR","DOIUrl":"10.1042/BSR-2018-1339_COR","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 7","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"eIF2β zinc-binding domain interacts with the eIF2γ subunit through the guanine nucleotide binding interface to promote Met-tRNAiMet binding.","authors":"Aranyadip Gayen, Pankaj V Alone","doi":"10.1042/BSR20240438","DOIUrl":"10.1042/BSR20240438","url":null,"abstract":"<p><p>The heterotrimeric eIF2 complex consists of a core eIF2γ subunit to which binds eIF2α and eIF2β subunits and plays an important role in delivering the Met-tRNAiMet to the 40S ribosome and start codon selection. The intricacies of eIF2β-γ interaction in promoting Met-tRNAiMet binding are not clearly understood. Previously, the zinc-binding domain (ZBD) eIF2βS264Y mutation was reported to cause Met-tRNAiMet binding defect due to the intrinsic GTPase activity. We showed that the eIF2βS264Y mutation has eIF2β-γ interaction defect. Consistently, the eIF2βT238A intragenic suppressor mutation restored the eIF2β-γ and Met-tRNAiMet binding. The eIF2β-ZBD residues Asn252Asp and Arg253Ala mutation caused Met-tRNAiMet binding defect that was partially rescued by the eIF2βT238A mutation, suggesting the eIF2β-ZBD modulates Met-tRNAiMet binding. The suppressor mutation rescued the translation initiation fidelity defect of the eIF2γN135D SW-I mutation and eIF2βF217A/Q221A double mutation in the HTH domain. The eIF2βT238A suppressor mutation could not rescue the eIF2β binding defect of the eIF2γV281K mutation; however, combining the eIF2βS264Y mutation with the eIF2γV281K mutation was lethal. In addition to the previously known interaction of eIF2β with the eIF2γ subunit via its α1-helix, the eIF2β-ZBD also interacts with the eIF2γ subunit via guanine nucleotide-binding interface; thus, the eIF2β-γ interacts via two distinct binding sites.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-Tian Zhang, Chun-Lei Ji, Yu-Juan Fu, Yue Yang, Guang-Yu Xu
{"title":"Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders.","authors":"Xiao-Tian Zhang, Chun-Lei Ji, Yu-Juan Fu, Yue Yang, Guang-Yu Xu","doi":"10.1042/BSR20232068","DOIUrl":"10.1042/BSR20232068","url":null,"abstract":"<p><p>Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-dose alcohol exacerbates hyperdynamic circulation and shunting in non-alcoholic cirrhotic rats.","authors":"Chon Kit Pun, Hui-Chun Huang, Ching-Chih Chang, Shao-Jung Hsu, Chiao-Lin Chuang, Yi-Hsiang Huang, Ming-Chih Hou, Fa-Yauh Lee","doi":"10.1042/BSR20240354","DOIUrl":"10.1042/BSR20240354","url":null,"abstract":"<p><strong>Background: </strong>Portal hypertension affects hepatic, splanchnic and portosystemic collateral systems. Although alcohol is a well-known risk factor for liver cirrhosis, it also affects vascular contractility. However, the relevant effects on portal hypertension have not been evaluated in non-alcoholic cirrhosis. The present study aimed to investigate the impacts of low-dose alcohol on portal hypertension-related derangements in non-alcoholic cirrhotic rats.</p><p><strong>Methods: </strong>Sprague-Dawley rats received bile duct ligation to induce cirrhosis or sham operation as controls. The chronic or acute effects of low-dose alcohol (2.4 g/kg/day, oral gavage, approximately 1.3 drinks/day in humans) were evaluated.</p><p><strong>Results: </strong>The chronic administration of low-dose alcohol did not precipitate liver fibrosis in the sham or cirrhotic rats; however, it significantly increased splanchnic blood inflow (P=0.034) and portosystemic collaterals (P=0.001). Mesenteric angiogenesis and pro-angiogenic proteins were up-regulated in the alcohol-treated cirrhotic rats, and poorer collateral vasoresponsiveness to vasoconstrictors (P<0.001) was noted. Consistently, acute alcohol administration reduced splenorenal shunt resistance. Collateral vasoresponsiveness to vasoconstrictors also significantly decreased (P=0.003).</p><p><strong>Conclusions: </strong>In non-alcoholic cirrhosis rats, a single dose of alcohol adversely affected portosystemic collateral vessels due to vasodilatation. Long-term alcohol use precipitated splanchnic hyperdynamic circulation, in which mesenteric angiogenesis played a role. Further studies are warranted to evaluate the benefits of avoiding low-dose alcohol consumption in patients with non-alcoholic cirrhosis.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Zhang, Suqin Chen, Feng Zhao, Wei Wang, Dayu Liu, Lin Chen, Ting Bai, Zhoulin Wu, Lili Ji, Jiamin Zhang
{"title":"Sulforaphane enhanced muscle growth by promoting lipid oxidation through modulating key signaling pathways.","authors":"Rui Zhang, Suqin Chen, Feng Zhao, Wei Wang, Dayu Liu, Lin Chen, Ting Bai, Zhoulin Wu, Lili Ji, Jiamin Zhang","doi":"10.1042/BSR20240084","DOIUrl":"10.1042/BSR20240084","url":null,"abstract":"<p><p>Sulforaphane (SFN) has shown diverse effects on human health and diseases. SFN was administered daily to C57BL/6J mice at doses of 1 mg/kg (SFN1) and 3 mg/kg (SFN3) for 8 weeks. Both doses of SFN accelerated body weight increment. The cross-sectional area and diameter of Longissimus dorsi (LD) muscle fibers were enlarged in SFN3 group. Triglyceride (TG) and total cholesterol (TC) levels in LD muscle were decreased in SFN groups. RNA sequencing results revealed that 2455 and 2318 differentially expressed genes (DEGs) were found in SFN1 and SFN3 groups, respectively. Based on GO enrichment analysis, 754 and 911 enriched GO terms in the SFN1 and SFN3 groups, respectively. KEGG enrichment analysis shown that one KEGG pathway was enriched in the SFN1 group, while six KEGG pathways were enriched in the SFN3 group. The expressions of nine selected DEGs validated with qRT-PCR were in line with the RNA sequencing data. Furthermore, SFN treatment influenced lipid and protein metabolism related pathways including AMPK signaling, fatty acid metabolism signaling, cholesterol metabolism signalling, PPAR signaling, peroxisome signaling, TGFβ signaling, and mTOR signaling. In summary, SFN elevated muscle fibers size and reduced TG and TC content of in LD muscle by modulating protein and lipid metabolism-related signaling pathways.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Wang, Sally McCormick, Megan P Leask, Huti Watson, Conor O'Sullivan, Jeremy D Krebs, Rosemary Hall, Patricia Whitfield, Troy L Merry, Rinki Murphy, Peter R Shepherd
{"title":"A Polynesian-specific SLC22A3 variant associates with low plasma lipoprotein(a) concentrations independent of apo(a) isoform size in males.","authors":"Qian Wang, Sally McCormick, Megan P Leask, Huti Watson, Conor O'Sullivan, Jeremy D Krebs, Rosemary Hall, Patricia Whitfield, Troy L Merry, Rinki Murphy, Peter R Shepherd","doi":"10.1042/BSR20240403","DOIUrl":"10.1042/BSR20240403","url":null,"abstract":"<p><p>Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL)-like particle in which the apolipoprotein B component is covalently linked to apolipoprotein(a) (apo(a)). Lp(a) is a well-established independent risk factor for cardiovascular diseases. Plasma Lp(a) concentrations vary enormously between individuals and ethnic groups. Several nucleotide polymorphisms in the SLC22A3 gene associate with Lp(a) concentration in people of different ethnicities. We investigated the association of a Polynesian-specific (Māori and Pacific peoples) SLC22A3 gene coding variant p.Thr44Met) with the plasma concentration of Lp(a) in a cohort of 302 healthy Polynesian males. An apo(a)-size independent assay assessed plasma Lp(a) concentrations; all other lipid and apolipoprotein concentrations were measured using standard laboratory techniques. Quantitative real-time polymerase chain reaction was used to determine apo(a) isoforms. The range of metabolic (HbA1c, blood pressure, and blood lipids) and blood lipid variables were similar between the non-carriers and carriers in age, ethnicity and BMI adjusted models. However, rs8187715 SLC22A3 variant was significantly associated with lower Lp(a) concentrations. Median Lp(a) concentration was 10.60 nmol/L (IQR: 5.40-41.00) in non-carrier group, and was 7.60 nmol/L (IQR: 5.50-12.10) in variant carrier group (P<0.05). Lp(a) concentration inversely correlated with apo(a) isoform size. After correction for apo(a) isoform size, metabolic parameters and ethnicity, the association between the SLC22A3 variant and plasma Lp(a) concentration remained. The present study is the first to identify the association of this gene variant and low plasma Lp(a) concentrations. This provides evidence for better guidance on ethnic specific cut-offs when defining 'elevated' and 'normal' plasma Lp(a) concentrations in clinical applications.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KRIT1 in vascular biology and beyond.","authors":"Angela J Glading","doi":"10.1042/BSR20231675","DOIUrl":"10.1042/BSR20231675","url":null,"abstract":"<p><p>KRIT1 is a 75 kDa scaffolding protein which regulates endothelial cell phenotype by limiting the response to inflammatory stimuli and maintaining a quiescent and stable endothelial barrier. Loss-of-function mutations in KRIT1 lead to the development of cerebral cavernous malformations (CCM), a disease marked by the formation of abnormal blood vessels which exhibit a loss of barrier function, increased endothelial proliferation, and altered gene expression. While many advances have been made in our understanding of how KRIT1, and the functionally related proteins CCM2 and PDCD10, contribute to the regulation of blood vessels and the vascular barrier, some important open questions remain. In addition, KRIT1 is widely expressed and KRIT1 and the other CCM proteins have been shown to play important roles in non-endothelial cell types and tissues, which may or may not be related to their role as pathogenic originators of CCM. In this review, we discuss some of the unsettled questions regarding the role of KRIT1 in vascular physiology and discuss recent advances that suggest this ubiquitously expressed protein may have a role beyond the endothelial cell.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
May A Azzam, Sally A Fahim, Asmaa A ElMonier, Nadine W Maurice
{"title":"Functional analysis of a panel of molecular markers for diagnosis of systemic lupus erythematosus in rats.","authors":"May A Azzam, Sally A Fahim, Asmaa A ElMonier, Nadine W Maurice","doi":"10.1042/BSR20240318","DOIUrl":"10.1042/BSR20240318","url":null,"abstract":"<p><strong>Introduction: </strong>Systemic lupus erythematosus (SLE) is a diverse autoimmune disease that arises from a combination of complex genetic factors and environmental influences. While circRNAs and miRNAs have recently been identified as promising biomarkers for disease diagnosis, their specific expression patterns, and clinical implications in SLE are not yet fully understood.</p><p><strong>Aim of the work: </strong>The aim of the present study was to determine the role of a panel of noncoding-RNAs specifically circRNAs (circ-TubD1, circ-CDC27, and circ-Med14), along with miRNA (rno-miR-146a-5p) and mRNA (TRAF6), as novel minimally invasive diagnostic biomarkers for experimentally induced SLE. Additionally, the study involved an insilico bioinformatics analysis to explore potential pathways involved in the pathogenesis of SLE, aiming to enhance our understanding of the disease, enable early diagnosis, and facilitate improved treatment strategies.</p><p><strong>Materials and methods: </strong>SLE was induced in rats using single IP injection of incomplete Freund's adjuvant (IFA). The Induction was confirmed by assessing the ANA and anti-ds DNA levels using ELSA technique. qPCR analysis was conducted to assess the expression of selected RNAs in sera collected from a group of 10 rats with induced SLE and a control group of 10 rats. In addition, bioinformatics and functional analysis were used to construct a circRNA-miRNA-mRNA network and to determine the potential function of these differentially expressed circRNAs.</p><p><strong>Results: </strong>SLE rats demonstrated significantly higher expression levels of circ-CDC27, circ-Med14, and rno-miR-146a-5p as well as TRAF6, with lower expression level of circ-TubD1 in sera of SLE rats relative to controls. ROC curve analysis indicated that all the selected non-coding RNAs could serve as potential early diagnostic markers for SLE. In addition, the expression level of circ-TubD1 was negatively correlated with rno-miR-146a-5p, however, rno-miR-146a-5p was positively correlated with TRAF6. Bioinformatic analysis revealed the incorporation of the circRNAs targeted genes in various immune system and neurodegeneration pathways.</p><p><strong>Conclusions: </strong>Therefore, circRNAs; circ-TubD1, circ-CDC27, and circ-Med14, in addition to the miRNA (rno-miR-146a-5p) and mRNA (TRAF6) may be involved in the development of SLE and may have promising roles for future diagnosis and targeted therapy.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}