ACSL1作为调节髓核细胞铁下垂生物标志物的鉴定和功能验证。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yichi Zhou, Ke Wang, Min Ren, Jiebin Wang, Fanglin Wang, Bingbing Zhuang, Lin Chen, Zhiqiang Zhang, Changsheng Wang
{"title":"ACSL1作为调节髓核细胞铁下垂生物标志物的鉴定和功能验证。","authors":"Yichi Zhou, Ke Wang, Min Ren, Jiebin Wang, Fanglin Wang, Bingbing Zhuang, Lin Chen, Zhiqiang Zhang, Changsheng Wang","doi":"10.1042/BSR20241414","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IVDD) is a prevalent musculoskeletal disorder characterized by the deterioration of nucleus pulposus (NP) cells, leading to significant impairments in patients' quality of life. Elucidating the molecular mechanisms underlying IVDD is essential for developing effective therapeutic strategies. In this study, we utilized weighted gene co-expression network analysis to identify key module eigengenes (MEs) from the GSE124272 dataset, combined with differential gene expression analysis to pinpoint differentially expressed genes (DEGs). Functional enrichment analysis revealed that MEs were primarily associated with lipid metabolism and immune response, while DEGs were enriched in immune response and cell proliferation pathways. By integrating MEs, DEGs, and ferroptosis-related genes, we identified six hub genes (acyl-CoA synthetase long-chain family member 1 [ACSL1], BACH1, CBS, CP, AKR1C1, and AKR1C3). Consensus clustering analysis classified samples into two immune-related subgroups, C1 and C2, with single-sample gene set enrichment analysis demonstrating distinct immune scores between the subgroups. Notably, ACSL1 showed the strongest correlation with immune cell infiltration and was significantly up-regulated in the C1 subgroup, which exhibited higher immune scores. In vitro experiments confirmed elevated ACSL1 expression in an IL-1β-induced degenerative NP cell model. Silencing ACSL1 improved cell viability, reduced apoptosis, and restored mitochondrial membrane potential, alongside significant changes in intracellular Fe2+, malondialdehyde, and glutathione levels. In vivo experiments further validated increased ACSL1 expression in intervertebral disc tissues of IVDD rats. Collectively, these findings highlight ACSL1 as a potential biomarker for the early diagnosis of IVDD and a promising therapeutic target.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and functional validation of ACSL1 as a biomarker regulating ferroptosis in nucleus pulposus cell.\",\"authors\":\"Yichi Zhou, Ke Wang, Min Ren, Jiebin Wang, Fanglin Wang, Bingbing Zhuang, Lin Chen, Zhiqiang Zhang, Changsheng Wang\",\"doi\":\"10.1042/BSR20241414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intervertebral disc degeneration (IVDD) is a prevalent musculoskeletal disorder characterized by the deterioration of nucleus pulposus (NP) cells, leading to significant impairments in patients' quality of life. Elucidating the molecular mechanisms underlying IVDD is essential for developing effective therapeutic strategies. In this study, we utilized weighted gene co-expression network analysis to identify key module eigengenes (MEs) from the GSE124272 dataset, combined with differential gene expression analysis to pinpoint differentially expressed genes (DEGs). Functional enrichment analysis revealed that MEs were primarily associated with lipid metabolism and immune response, while DEGs were enriched in immune response and cell proliferation pathways. By integrating MEs, DEGs, and ferroptosis-related genes, we identified six hub genes (acyl-CoA synthetase long-chain family member 1 [ACSL1], BACH1, CBS, CP, AKR1C1, and AKR1C3). Consensus clustering analysis classified samples into two immune-related subgroups, C1 and C2, with single-sample gene set enrichment analysis demonstrating distinct immune scores between the subgroups. Notably, ACSL1 showed the strongest correlation with immune cell infiltration and was significantly up-regulated in the C1 subgroup, which exhibited higher immune scores. In vitro experiments confirmed elevated ACSL1 expression in an IL-1β-induced degenerative NP cell model. Silencing ACSL1 improved cell viability, reduced apoptosis, and restored mitochondrial membrane potential, alongside significant changes in intracellular Fe2+, malondialdehyde, and glutathione levels. In vivo experiments further validated increased ACSL1 expression in intervertebral disc tissues of IVDD rats. Collectively, these findings highlight ACSL1 as a potential biomarker for the early diagnosis of IVDD and a promising therapeutic target.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20241414\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20241414","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

椎间盘退变(IVDD)是一种常见的肌肉骨骼疾病,其特征是髓核(NP)细胞的退化,导致患者生活质量的显著损害。阐明IVDD的分子机制对于制定有效的治疗策略至关重要。在这项研究中,我们利用加权基因共表达网络分析(WGCNA)从GSE124272数据集中识别关键模块特征基因(MEs),并结合差异基因表达分析来确定差异表达基因(DEGs)。功能富集分析显示,MEs主要与脂质代谢和免疫应答相关,而DEGs则富集于免疫应答和细胞增殖途径。通过整合MEs、DEGs和凋亡相关基因,我们鉴定出6个枢纽基因(ACSL1、BACH1、CBS、CP、AKR1C1和AKR1C3)。共识聚类分析将样本分为两个免疫相关亚组,C1和C2,单样本基因集富集分析(ssGSEA)显示亚组之间的免疫评分不同。值得注意的是,ACSL1与免疫细胞浸润的相关性最强,在C1亚组中表达显著上调,免疫评分较高。体外实验证实,在il -1β诱导的退行性NP细胞模型中,ACSL1表达升高。沉默ACSL1可提高细胞活力,减少凋亡,恢复线粒体膜电位,同时显著改变细胞内Fe2+、MDA和GSH水平。体内实验进一步证实了ACSL1在IVDD大鼠椎间盘组织中的表达升高。总的来说,这些发现突出了ACSL1作为IVDD早期诊断的潜在生物标志物和有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and functional validation of ACSL1 as a biomarker regulating ferroptosis in nucleus pulposus cell.

Intervertebral disc degeneration (IVDD) is a prevalent musculoskeletal disorder characterized by the deterioration of nucleus pulposus (NP) cells, leading to significant impairments in patients' quality of life. Elucidating the molecular mechanisms underlying IVDD is essential for developing effective therapeutic strategies. In this study, we utilized weighted gene co-expression network analysis to identify key module eigengenes (MEs) from the GSE124272 dataset, combined with differential gene expression analysis to pinpoint differentially expressed genes (DEGs). Functional enrichment analysis revealed that MEs were primarily associated with lipid metabolism and immune response, while DEGs were enriched in immune response and cell proliferation pathways. By integrating MEs, DEGs, and ferroptosis-related genes, we identified six hub genes (acyl-CoA synthetase long-chain family member 1 [ACSL1], BACH1, CBS, CP, AKR1C1, and AKR1C3). Consensus clustering analysis classified samples into two immune-related subgroups, C1 and C2, with single-sample gene set enrichment analysis demonstrating distinct immune scores between the subgroups. Notably, ACSL1 showed the strongest correlation with immune cell infiltration and was significantly up-regulated in the C1 subgroup, which exhibited higher immune scores. In vitro experiments confirmed elevated ACSL1 expression in an IL-1β-induced degenerative NP cell model. Silencing ACSL1 improved cell viability, reduced apoptosis, and restored mitochondrial membrane potential, alongside significant changes in intracellular Fe2+, malondialdehyde, and glutathione levels. In vivo experiments further validated increased ACSL1 expression in intervertebral disc tissues of IVDD rats. Collectively, these findings highlight ACSL1 as a potential biomarker for the early diagnosis of IVDD and a promising therapeutic target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信