Bioscience Reports最新文献

筛选
英文 中文
Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS. (E)-(2,4-二羟基)-a-氨基肉桂酸(一种羟基肉桂酸衍生物)对 TNBS 诱导的溃疡性结肠炎模型的保护作用。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240797
Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández
{"title":"Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS.","authors":"Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández","doi":"10.1042/BSR20240797","DOIUrl":"10.1042/BSR20240797","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells. 多酚黄酮类化合物鱼腥草素和槲皮素对人间质基质细胞脂肪分化的影响
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240623
Chanchao Lorthongpanich, Thanapon Charoenwongpaiboon, Praphasri Septham, Chuti Laowtammathron, Pimonwan Srisook, Pakpoom Kheolamai, Sirikul Manochantr, Surapol Issaragrisil
{"title":"Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells.","authors":"Chanchao Lorthongpanich, Thanapon Charoenwongpaiboon, Praphasri Septham, Chuti Laowtammathron, Pimonwan Srisook, Pakpoom Kheolamai, Sirikul Manochantr, Surapol Issaragrisil","doi":"10.1042/BSR20240623","DOIUrl":"10.1042/BSR20240623","url":null,"abstract":"<p><p>Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: miRNA-103 promotes chondrocyte apoptosis by downregulation of Sphingosine kinase-1 and ameliorates PI3K/AKT pathway in osteoarthritis. 关注表达:miRNA-103 通过下调鞘磷脂激酶-1 促进软骨细胞凋亡,并改善骨关节炎中的 PI3K/AKT 通路。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR-2019-1255_EOC
{"title":"Expression of Concern: miRNA-103 promotes chondrocyte apoptosis by downregulation of Sphingosine kinase-1 and ameliorates PI3K/AKT pathway in osteoarthritis.","authors":"","doi":"10.1042/BSR-2019-1255_EOC","DOIUrl":"10.1042/BSR-2019-1255_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs. 用于研究膜蛋白二聚化的胞外双分子荧光互补:使用 B 类 GPCR 的概念验证。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240449
Michael L Garelja, Tyla I Alexander, Christopher S Walker, Debbie L Hay
{"title":"Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs.","authors":"Michael L Garelja, Tyla I Alexander, Christopher S Walker, Debbie L Hay","doi":"10.1042/BSR20240449","DOIUrl":"10.1042/BSR20240449","url":null,"abstract":"<p><p>Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property in a NFκB-dependent way. 关注表达:HER2 通过依赖 NFκB 的方式诱导干细胞样特性,降低卵巢癌细胞对药物的敏感性。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR-2018-0829_EOC
{"title":"Expression of Concern: HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property in a NFκB-dependent way.","authors":"","doi":"10.1042/BSR-2018-0829_EOC","DOIUrl":"10.1042/BSR-2018-0829_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function. 耐力运动员体内有利的高密度脂蛋白成分与高密度脂蛋白体外抗氧化和内皮抗炎功能的变化无关。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20241165
Jack David Beazer, Anne Sillars, Sally Beck, Christina Christoffersen, Maria J Ferraz, Monique T Mulder, Delyth Graham, Helen Karlsson, Stefan Ljunggren, Jason Gill, Dilys J Freeman
{"title":"Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function.","authors":"Jack David Beazer, Anne Sillars, Sally Beck, Christina Christoffersen, Maria J Ferraz, Monique T Mulder, Delyth Graham, Helen Karlsson, Stefan Ljunggren, Jason Gill, Dilys J Freeman","doi":"10.1042/BSR20241165","DOIUrl":"10.1042/BSR20241165","url":null,"abstract":"<p><p>Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown. This cross-sectional study aimed to measure HDL composition and antioxidant/endothelial anti-inflammatory function in insulin sensitive endurance athlete and healthy control men. HDL was isolated using density gradient ultracentrifugation. HDL composition was measured using microplate assays for apolipoprotein A-I, total cholesterol content and apolipoprotein M. HDL protein composition was measured using nano-liquid chromatography tandem mass spectrometry. HDL subclass distribution was measured by native gel electrophoresis. HDL in vitro antioxidant function was measured by paraoxonase-1 activity assay and anti-inflammatory function assessed in endothelial cells. Compared with controls, endurance athlete HDL had higher apolipoprotein A-1 (1.65 ± 0.62 mg/ml vs 1.21 ± 0.34 mg/ml, P=0.028) and higher total cholesterol content (2.09 ± 0.44 mmol/L vs 1.54 ± 0.33 mmol/L, P<0.001). Proteomics revealed higher apolipoprotein A-II, A-IV and D and transthyretin in endurance athlete HDL versus controls. There was no difference observed in in vitro HDL antioxidant or anti-inflammatory functions between controls and endurance athletes. Despite a more favourable composition, endurance athlete HDL did not have higher in vitro antioxidant or anti-inflammatory function. It is possible that HDL has a ceiling of function, i.e. that healthy HDL function cannot be enhanced by endurance exercise.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the GABARAP binding determinant in PI4K2A. 鉴定 PI4K2A 中的 GABARAP 结合决定因子。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240200
Yan Chen, Barbara Barylko, John P Eichorst, Joachim D Mueller, Joseph P Albanesi
{"title":"Identification of the GABARAP binding determinant in PI4K2A.","authors":"Yan Chen, Barbara Barylko, John P Eichorst, Joachim D Mueller, Joseph P Albanesi","doi":"10.1042/BSR20240200","DOIUrl":"10.1042/BSR20240200","url":null,"abstract":"<p><p>GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion. Here, we identify a 7-amino acid segment within the PI4K2A catalytic domain that contains the GABARAP interaction motif (GIM). This segment resides in an exposed loop that is not conserved in the other mammalian Type II PI 4-kinase, PI4K2B, explaining the specificity of GABARAP binding to the PI4K2A isoform. Mutation of the PI4K2A GIM inhibits GABARAP binding and PI4K2A-mediated recruitment of cytosolic GABARAP to subcellular organelles. We further show that GABARAP binds to mono-phosphorylated phosphoinositides, PI3P, PI4P, and PI5P, raising the possibility that these lipids contribute to the binding energies that drive GABARAP-protein interactions on membranes.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of structure in regulatory RNA elements. 结构在 RNA 调控元件中的作用。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240139
Jan-Niklas Tants, Andreas Schlundt
{"title":"The role of structure in regulatory RNA elements.","authors":"Jan-Niklas Tants, Andreas Schlundt","doi":"10.1042/BSR20240139","DOIUrl":"10.1042/BSR20240139","url":null,"abstract":"<p><p>Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress, and cell death in mice kidney. 更正:姜黄绿色合成硒纳米粒子对顺铂诱导的氧化-炎症应激和小鼠肾脏细胞死亡具有治疗活性。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR-2023-1130_COR
{"title":"Correction: Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress, and cell death in mice kidney.","authors":"","doi":"10.1042/BSR-2023-1130_COR","DOIUrl":"10.1042/BSR-2023-1130_COR","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asynchronous changes of hydrogen sulfide and its generating enzymes in most tissues with the aging process. 硫化氢及其生成酶在大多数组织中的变化与衰老过程不同步。
IF 3.8 3区 生物学
Bioscience Reports Pub Date : 2024-10-30 DOI: 10.1042/BSR20240320
Kaichuan He, Bo Tan, Ao Lu, Lu Bai, Chengqing Song, Yuxin Miao, Biyu Liu, Qian Chen, Xu Teng, Jing Dai, Yuming Wu
{"title":"Asynchronous changes of hydrogen sulfide and its generating enzymes in most tissues with the aging process.","authors":"Kaichuan He, Bo Tan, Ao Lu, Lu Bai, Chengqing Song, Yuxin Miao, Biyu Liu, Qian Chen, Xu Teng, Jing Dai, Yuming Wu","doi":"10.1042/BSR20240320","DOIUrl":"10.1042/BSR20240320","url":null,"abstract":"<p><p>Aging is an inevitable and irreversible biological process that gradually heightens the risks of various diseases and death. As a newly discovered endogenous gasotransmitter, hydrogen sulfide (H2S) has been identified to exert multiple beneficial impacts on the regulation of aging and age-related pathologies. This study was aimed at systematically exploring the relationship between asynchronous aging processes and H2S concentrations in various tissues of aging mice. Samples of plasma and 13 tissues were collected from four cross-sectional age groups (3, 6, 12 and 18 months of age) covering the lifespan of male C57BL/6J mice. The H2S concentration was quantified by a reported liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with monobromobimane derivatization. Additionally, the expressions of cystathionine γ-lyase (CSE), cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase, in those tissues were analyzed by Western blotting. We discovered that the H2S concentrations decreased asynchronously with the aging process in plasma, heart, liver, kidney, spleen, subcutaneous fat and brown fat and increased in brain and lung. At least one of the three H2S-generating enzymes expressions was compensatorily up-regulated with the aging process in most tissues, among which the up-regulation of CSE was the most prominent.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信