协同调节因子决定前列腺癌中雄激素受体的活性。

IF 4.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kerim Yavuz, Nathan A Lack
{"title":"协同调节因子决定前列腺癌中雄激素受体的活性。","authors":"Kerim Yavuz, Nathan A Lack","doi":"10.1042/BSR20253197","DOIUrl":null,"url":null,"abstract":"<p><p>The androgen receptor (AR) is the main driver of nearly all prostate cancer (PCa). It alters gene expression by binding to specific cis-regulatory elements on the DNA. Where the AR binds in the genome determines what genes are expressed. However, the AR cistrome is not static and dramatically changes during PCa initiation and progression to activate distinct transcriptional programs that fuel disease growth and therapeutic resistance. Emerging evidence suggests that these changes in DNA binding are not caused by chromatin accessibility but rather from interactions with AR coregulators. These proteins influence AR at every step of its activity and play a critical role in DNA binding and gene activation. These context-specific coregulator interactions can stabilize AR binding with DNA that has low- to moderate-affinity and also affect locus-specific epigenetic modifications to promote transcription. Given their critical role in this process, alterations to coregulator proteins define the normal and oncogenic cistrome and profoundly affect AR-mediated gene transcription. In this review, we aim to provide a new perspective on the role of AR coregulators in transcriptional activity, how these interactions evolve through different stages of PCa and their potential as therapeutic targets in advanced disease.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"45 8","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coregulators determine androgen receptor activity in prostate cancer.\",\"authors\":\"Kerim Yavuz, Nathan A Lack\",\"doi\":\"10.1042/BSR20253197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The androgen receptor (AR) is the main driver of nearly all prostate cancer (PCa). It alters gene expression by binding to specific cis-regulatory elements on the DNA. Where the AR binds in the genome determines what genes are expressed. However, the AR cistrome is not static and dramatically changes during PCa initiation and progression to activate distinct transcriptional programs that fuel disease growth and therapeutic resistance. Emerging evidence suggests that these changes in DNA binding are not caused by chromatin accessibility but rather from interactions with AR coregulators. These proteins influence AR at every step of its activity and play a critical role in DNA binding and gene activation. These context-specific coregulator interactions can stabilize AR binding with DNA that has low- to moderate-affinity and also affect locus-specific epigenetic modifications to promote transcription. Given their critical role in this process, alterations to coregulator proteins define the normal and oncogenic cistrome and profoundly affect AR-mediated gene transcription. In this review, we aim to provide a new perspective on the role of AR coregulators in transcriptional activity, how these interactions evolve through different stages of PCa and their potential as therapeutic targets in advanced disease.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20253197\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20253197","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

雄激素受体(AR)是几乎所有前列腺癌(PCa)的主要驱动因素。它通过结合DNA上特定的顺式调控元件来改变基因表达。AR在基因组中的结合位置决定了哪些基因被表达。然而,在前列腺癌的起始和进展过程中,AR细胞并不是静态的,它会发生巨大的变化,从而激活不同的转录程序,从而促进疾病的生长和治疗耐药性。新出现的证据表明,DNA结合的这些变化不是由染色质可及性引起的,而是由与AR共调节因子的相互作用引起的。这些蛋白影响AR活性的每一步,并在DNA结合和基因激活中发挥关键作用。这些上下文特异性的共调节因子相互作用可以稳定AR与具有低至中等亲和力的DNA结合,并影响位点特异性表观遗传修饰以促进转录。考虑到协同调节蛋白在这一过程中的关键作用,它们的改变定义了正常和致癌的胞浆,并深刻影响ar介导的基因转录。在这篇综述中,我们旨在为AR共调节因子在转录活性中的作用提供一个新的视角,这些相互作用如何在PCa的不同阶段演变,以及它们作为晚期疾病治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coregulators determine androgen receptor activity in prostate cancer.

The androgen receptor (AR) is the main driver of nearly all prostate cancer (PCa). It alters gene expression by binding to specific cis-regulatory elements on the DNA. Where the AR binds in the genome determines what genes are expressed. However, the AR cistrome is not static and dramatically changes during PCa initiation and progression to activate distinct transcriptional programs that fuel disease growth and therapeutic resistance. Emerging evidence suggests that these changes in DNA binding are not caused by chromatin accessibility but rather from interactions with AR coregulators. These proteins influence AR at every step of its activity and play a critical role in DNA binding and gene activation. These context-specific coregulator interactions can stabilize AR binding with DNA that has low- to moderate-affinity and also affect locus-specific epigenetic modifications to promote transcription. Given their critical role in this process, alterations to coregulator proteins define the normal and oncogenic cistrome and profoundly affect AR-mediated gene transcription. In this review, we aim to provide a new perspective on the role of AR coregulators in transcriptional activity, how these interactions evolve through different stages of PCa and their potential as therapeutic targets in advanced disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信