Structural insights into substrate binding, residue contributions, and catalytic mechanism of phosphopantetheine adenylyltransferase from Helicobacter pylori.

IF 4.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
I-Ting Ko, Yi-Ting Yuan, Cheng-Ju Hsieh, Hui-Ting Hsu, Hsien-Sheng Yin
{"title":"Structural insights into substrate binding, residue contributions, and catalytic mechanism of phosphopantetheine adenylyltransferase from Helicobacter pylori.","authors":"I-Ting Ko, Yi-Ting Yuan, Cheng-Ju Hsieh, Hui-Ting Hsu, Hsien-Sheng Yin","doi":"10.1042/BSR20241405","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphopantetheine adenylyltransferase (PPAT) (PPAT; EC 2.7.3.3) is a key enzyme in coenzyme A (CoA) biosynthesis. It catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant), producing pyrophosphate and 3'-dephospho-CoA (dPCoA). Although the crystal structures of PPATs with various ligands have been studied, the specific contributions of residues to catalytic efficiency remain unclear. Here, we present the crystal structures of Helicobacter pylori PPAT (HpPPAT) in its apo form and complexes with Ppant and ATP. Additionally, we report the structure of the HpPPAT P8A mutant bound to dPCoA, providing the first complete occupancy structure of a PPAT complex across the hexamer. In the HpPPAT:ATP complex structure, critical active site residues Thr10, His18, Arg88, and Arg91, conserved in Escherichia coli PPAT (EcPPAT), are identified. HpPPAT utilizes Pro8, Lys42, and Arg133 for ATP binding. This differs from the binding pattern observed in other bacterial PPATs. Mutations of these residues, except for Thr10 and Lys42, resulted in a complete loss of enzymatic activity. This result highlights their critical roles. Mutating Thr10 and Lys42 to alanine reduced catalytic efficiency compared to WT HpPPAT but retained substantial activity. These residues are expected to orient the nucleophile for an in-line displacement mechanism. Based on structural studies and mutagenesis data with kinetic measurements and insights from other bacterial PPATs, we propose a refined catalytic mechanism for HpPPAT that emphasizes species-specific active-site interactions. This mechanism provides a foundation structure-based drugs H. pylori infections.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"0 ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20241405","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphopantetheine adenylyltransferase (PPAT) (PPAT; EC 2.7.3.3) is a key enzyme in coenzyme A (CoA) biosynthesis. It catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant), producing pyrophosphate and 3'-dephospho-CoA (dPCoA). Although the crystal structures of PPATs with various ligands have been studied, the specific contributions of residues to catalytic efficiency remain unclear. Here, we present the crystal structures of Helicobacter pylori PPAT (HpPPAT) in its apo form and complexes with Ppant and ATP. Additionally, we report the structure of the HpPPAT P8A mutant bound to dPCoA, providing the first complete occupancy structure of a PPAT complex across the hexamer. In the HpPPAT:ATP complex structure, critical active site residues Thr10, His18, Arg88, and Arg91, conserved in Escherichia coli PPAT (EcPPAT), are identified. HpPPAT utilizes Pro8, Lys42, and Arg133 for ATP binding. This differs from the binding pattern observed in other bacterial PPATs. Mutations of these residues, except for Thr10 and Lys42, resulted in a complete loss of enzymatic activity. This result highlights their critical roles. Mutating Thr10 and Lys42 to alanine reduced catalytic efficiency compared to WT HpPPAT but retained substantial activity. These residues are expected to orient the nucleophile for an in-line displacement mechanism. Based on structural studies and mutagenesis data with kinetic measurements and insights from other bacterial PPATs, we propose a refined catalytic mechanism for HpPPAT that emphasizes species-specific active-site interactions. This mechanism provides a foundation structure-based drugs H. pylori infections.

幽门螺杆菌磷酸蜂氨酸腺苷转移酶的底物结合、残基贡献和催化机制的结构见解。
磷酸antetheine adenylyltransferase (PPAT; EC 2.7.3.3)是辅酶a (CoA)生物合成中的关键酶。它催化腺苷基从ATP可逆转移到4'-磷酸antetheine (Ppant),产生焦磷酸和3'-去磷酸辅酶a (dPCoA)。虽然已经研究了各种配体ppat的晶体结构,但残基对催化效率的具体贡献尚不清楚。在这里,我们展示了幽门螺杆菌PPAT (HpPPAT)的载脂蛋白形式及其与Ppant和ATP的配合物的晶体结构。此外,我们报道了与dPCoA结合的PPAT P8A突变体的结构,提供了PPAT复合体跨六聚体的第一个完整的占用结构。在HpPPAT:ATP复合物结构中,鉴定出大肠杆菌PPAT (EcPPAT)中保守的关键活性位点残基Thr10、His18、Arg88和Arg91。HpPPAT利用Pro8、Lys42和Arg133结合ATP。这与在其他细菌ppat中观察到的结合模式不同。除Thr10和Lys42外,这些残基的突变导致酶活性完全丧失。这一结果突出了它们的关键作用。与WT HpPPAT相比,将Thr10和Lys42突变为丙氨酸降低了催化效率,但保留了大量活性。这些残基有望使亲核试剂定向成直线位移机制。基于结构研究和诱变数据以及动力学测量和其他细菌ppat的见解,我们提出了一种精细的HpPPAT催化机制,强调物种特异性活性位点相互作用。这一机制为治疗幽门螺旋杆菌感染提供了基础结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信