{"title":"Cyanothece sp. ATCC 51142二氨基酰脱羧酶的动力学和同源性模型分析:揭示赖氨酸生物合成的关键酶。","authors":"Zhi-Min Li, Suhang Chen, Weikang Luo, Fang Wang, Siqi Wang, Liyang Huang, Xinyue Xiong, Congcong Xie, Zhimin Li","doi":"10.1042/BSR20253430","DOIUrl":null,"url":null,"abstract":"<p><p>Diaminopimelate decarboxylase (DAPDC), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the decarboxylation of diaminopimelate (DAP) to yield L-lysine, a key step in lysine biosynthesis. This present study presents a preliminary characterization of DAPDC encoded by the cce1351 gene in Cyanothece sp. ATCC 51142 (CsDAPDC), focusing on its biochemical properties and model structure characteristics. The enzyme exhibited a peak activity at 30°C and pH 8.0, and the catalytic constant (kcat) and substrate binding affinity Michaelis constant (KM) were determined as 1.68 s-1 and 1.20 mM at the above-mentioned condition, respectively. Homology modeling and molecular docking analysis revealed that Gly286, Gly330, Tyr428, and Asp118 interacted with the PLP cofactor, and Ser249, Tyr372, and Tyr428 interacted with the DAP substrate. Additionally, Cys399, Glu400, and Tyr436 from the other monomer were also involved in binding DAP and PLP. Site-directed mutagenesis confirmed the functional roles of these key residues in catalysis. This work provides valuable insights into the catalytic mechanism of CsDAPDC and highlights the enzyme's potential for applications in metabolic engineering of cyanobacteria for enhanced lysine production.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic and homology model analysis of diaminopimelate decarboxylase from Cyanothece sp. ATCC 51142: unveiling a key enzyme in lysine biosynthesis.\",\"authors\":\"Zhi-Min Li, Suhang Chen, Weikang Luo, Fang Wang, Siqi Wang, Liyang Huang, Xinyue Xiong, Congcong Xie, Zhimin Li\",\"doi\":\"10.1042/BSR20253430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diaminopimelate decarboxylase (DAPDC), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the decarboxylation of diaminopimelate (DAP) to yield L-lysine, a key step in lysine biosynthesis. This present study presents a preliminary characterization of DAPDC encoded by the cce1351 gene in Cyanothece sp. ATCC 51142 (CsDAPDC), focusing on its biochemical properties and model structure characteristics. The enzyme exhibited a peak activity at 30°C and pH 8.0, and the catalytic constant (kcat) and substrate binding affinity Michaelis constant (KM) were determined as 1.68 s-1 and 1.20 mM at the above-mentioned condition, respectively. Homology modeling and molecular docking analysis revealed that Gly286, Gly330, Tyr428, and Asp118 interacted with the PLP cofactor, and Ser249, Tyr372, and Tyr428 interacted with the DAP substrate. Additionally, Cys399, Glu400, and Tyr436 from the other monomer were also involved in binding DAP and PLP. Site-directed mutagenesis confirmed the functional roles of these key residues in catalysis. This work provides valuable insights into the catalytic mechanism of CsDAPDC and highlights the enzyme's potential for applications in metabolic engineering of cyanobacteria for enhanced lysine production.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20253430\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20253430","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Kinetic and homology model analysis of diaminopimelate decarboxylase from Cyanothece sp. ATCC 51142: unveiling a key enzyme in lysine biosynthesis.
Diaminopimelate decarboxylase (DAPDC), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the decarboxylation of diaminopimelate (DAP) to yield L-lysine, a key step in lysine biosynthesis. This present study presents a preliminary characterization of DAPDC encoded by the cce1351 gene in Cyanothece sp. ATCC 51142 (CsDAPDC), focusing on its biochemical properties and model structure characteristics. The enzyme exhibited a peak activity at 30°C and pH 8.0, and the catalytic constant (kcat) and substrate binding affinity Michaelis constant (KM) were determined as 1.68 s-1 and 1.20 mM at the above-mentioned condition, respectively. Homology modeling and molecular docking analysis revealed that Gly286, Gly330, Tyr428, and Asp118 interacted with the PLP cofactor, and Ser249, Tyr372, and Tyr428 interacted with the DAP substrate. Additionally, Cys399, Glu400, and Tyr436 from the other monomer were also involved in binding DAP and PLP. Site-directed mutagenesis confirmed the functional roles of these key residues in catalysis. This work provides valuable insights into the catalytic mechanism of CsDAPDC and highlights the enzyme's potential for applications in metabolic engineering of cyanobacteria for enhanced lysine production.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics