{"title":"Molecular signaling pathways in osteoarthritis and biomaterials for cartilage regeneration: a review.","authors":"Samson Prince Hiruthyaswamy, Arohi Bose, Ayushi Upadhyay, Tiasa Raha, Shangomitra Bhattacharjee, Isheeta Singha, Swati Ray, Nazarene Marylene Nicky Macarius, Pragasam Viswanathan, Kanagavel Deepankumar","doi":"10.1080/21655979.2025.2501880","DOIUrl":"https://doi.org/10.1080/21655979.2025.2501880","url":null,"abstract":"<p><p>Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2501880"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143957739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-22DOI: 10.1080/21655979.2025.2496006
{"title":"Statement of Retraction: The LOXL1 antisense RNA 1 (LOXL1-AS1)/microRNA-423-5p (miR-423-5p)/ectodermal-neural cortex 1 (ENC1) axis promotes cervical cancer through the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway.","authors":"","doi":"10.1080/21655979.2025.2496006","DOIUrl":"https://doi.org/10.1080/21655979.2025.2496006","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2496006"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-05-26DOI: 10.1080/21655979.2025.2507539
Burcu Hacıoğlu, Gabriela Paladino, Mattias Edman, Alireza Eivazi, Erik Hedenström
{"title":"Exploring metal bioaccumulation ability of boreal white-rot fungi on fiberbank material.","authors":"Burcu Hacıoğlu, Gabriela Paladino, Mattias Edman, Alireza Eivazi, Erik Hedenström","doi":"10.1080/21655979.2025.2507539","DOIUrl":"10.1080/21655979.2025.2507539","url":null,"abstract":"<p><p>Fiberbanks are organic-rich sediment deposits in aquatic environments, primarily formed through historical pulp and paper mill activities. These deposits consist of wood-derived fibrous materials and are contaminated with potentially toxic elements (PTEs) such as vanadium, chromium, cobalt, nickel, copper, zinc, arsenic, cadmium, and lead. The leaching of these contaminants into surrounding waters poses significant environmental and health risks, impacting aquatic ecosystems and potentially entering the food chain. Effective remediation of fiberbanks is crucial, particularly in Sweden and other regions with extensive wood-pulping industries. This study aims to evaluate the bioaccumulation capacities of 26 native Swedish white-rot fungi (WRF) species for the remediation of PTEs in fiberbank material. Fiberbank samples were collected from Sundsvall's Bay in the Baltic Sea, while the fungal species were isolated from boreal forests in Västernorrland, Sweden. The fungi were cultured on Hagem agar medium with sterilized fiberbank material as the substrate. After two months, fungal biomass was analyzed for PTE uptake using inductively coupled plasma-mass spectrometry (ICP-MS). The results revealed significant variability (<i>p</i> < 0.001) in PTE uptake among fungal species. <i>Phlebia tremellosa</i> consistently demonstrated the highest bioconcentration factors for analyzed elements, with values for V (0.39), Cr (0.10), Co (1.81), Cu (1.54), Pb (1.65), Ni (1.28), As (0.83), Zn (3.61), and Cd (5.56). Other species, including <i>Laetiporus sulphureus</i> (0.09-4.78), <i>Hymenochaete tabacina</i> (0.08-4.52), and <i>Diplomitoporus crustulinus</i> (0.08-4.48), also exhibited significant bioremediation potential. These findings highlight the potential of native WRF species for PTEs remediation in fiberbanks and provide a foundation for mycoremediation strategies in contaminated environments.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2507539"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144141117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-02-03DOI: 10.1080/21655979.2025.2458369
Manuel Joao Afecto Gonçalves, Cristina González-Fernández, Silvia Greses
{"title":"Assessing the effect of temperature drop on a stable anaerobic fermentation for volatile fatty acids production.","authors":"Manuel Joao Afecto Gonçalves, Cristina González-Fernández, Silvia Greses","doi":"10.1080/21655979.2025.2458369","DOIUrl":"10.1080/21655979.2025.2458369","url":null,"abstract":"<p><p>Anaerobic fermentation (AF) processes are sensitive to temperature fluctuations, which can influence the microbial activity and overall metabolic performances. Anaerobic reactors can face unforeseen temperature control failures, leading to instabilities in the process. The present study investigated the effect of two short-term temperature perturbations (down to 20°C and 15°C) on AF of food wastes (FWs). While 20°C did not exhibit a negative impact on AF performance maintaining the bioconversion yields over 40%, the reactor subjected to 15°C presented an acidogenic limitation, which decreased the bioconversion yields (36.4 ± 1.8%). As a result, 2.2 ± 0.5 g/L of succinic acid was accumulated in the reactor, being identified as a temperature failure indicator. Once the conditions were reestablished (operation temperature of 25ºC), the metabolic redundancies identified in the reactors allowed the AFs recovery to initial fermentation yields. 20°C was further tested as operational temperature resulting in stable bioconversion yield similar to the Control Reactor (43.2 ± 0.3%). These results showed the feasibility of conducting AF under low temperatures, indicating the potential of this technology to increase the cost-effectiveness of AF at psychrophilic conditions.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458369"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-01-29DOI: 10.1080/21655979.2025.2458376
Hyerang Eom, Yeon-Jae Choi, Rutuja Nandre, Minseek Kim, Youn-Lee Oh, Sinil Kim, Takehito Nakazawa, Yoichi Honda, Hyeon-Su Ro
{"title":"Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in <i>Ganoderma lucidum</i>.","authors":"Hyerang Eom, Yeon-Jae Choi, Rutuja Nandre, Minseek Kim, Youn-Lee Oh, Sinil Kim, Takehito Nakazawa, Yoichi Honda, Hyeon-Su Ro","doi":"10.1080/21655979.2025.2458376","DOIUrl":"10.1080/21655979.2025.2458376","url":null,"abstract":"<p><p>Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs. Co-transformation of donor DNAs with RNP targeting the <i>pyrG</i> gene in <i>Ganoderma lucidum</i> yielded 184 transformants without homologous arms and 781 with 300-bp homologous arms (HR_donor DNAs). Restriction analysis and sequencing identified 122 hR_donor DNA transformants with complete donor DNA sequences, achieving 15.6% HDR efficiency (122/781), contrasting with 8 instances via NHEJ from the 184 transformants. These findings highlight the viability of HDR for precise genomic editing in mushrooms, enabling targeted modifications to enhance functionalities.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458376"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491957
{"title":"Statement of Retraction: LncRNA SNHG12 in extracellular vesicles derived from carcinoma-associated fibroblasts promotes cisplatin resistance in non-small cell lung cancer cells.","authors":"","doi":"10.1080/21655979.2025.2491957","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491957","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491957"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491941
{"title":"Statement of Retraction: CircSLC7A6 promotes the progression of Wilms' tumor via microRNA-107/ ABL proto-oncogene 2 axis.","authors":"","doi":"10.1080/21655979.2025.2491941","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491941","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491941"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491959
{"title":"Statement of Retraction: Knockdown of hypoxia-inducible factor 1-alpha (HIF1α) interferes with angiopoietin-like protein 2 (ANGPTL2) to attenuate high glucose-triggered hypoxia/reoxygenation injury in cardiomyocytes.","authors":"","doi":"10.1080/21655979.2025.2491959","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491959","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491959"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491922
{"title":"Statement of Retraction: LncRNA ASMTL-AS1/microRNA-1270 differentiate prognostic groups in gastric cancer and influence cell proliferation, migration and invasion.","authors":"","doi":"10.1080/21655979.2025.2491922","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491922","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491922"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143962771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491940
{"title":"Statement of Retraction: Sulforaphane ameliorates amyloid-β-induced inflammatory injury by suppressing the PARP1/SIRT1 pathway in retinal pigment epithelial cells.","authors":"","doi":"10.1080/21655979.2025.2491940","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491940","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491940"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143969404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}