Exploring the mechanisms of supplemented CO2 in enhancing methane production in anaerobic digestion process, a review.

IF 4.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioengineered Pub Date : 2025-12-01 Epub Date: 2025-07-22 DOI:10.1080/21655979.2025.2531667
Wahyunanto Agung Nugroho, Ni'matul Izza, Ummul Hasanah Hj Hassan, Ahmad A Alsaigh, Yusuf Wibisono
{"title":"Exploring the mechanisms of supplemented CO<sub>2</sub> in enhancing methane production in anaerobic digestion process, a review.","authors":"Wahyunanto Agung Nugroho, Ni'matul Izza, Ummul Hasanah Hj Hassan, Ahmad A Alsaigh, Yusuf Wibisono","doi":"10.1080/21655979.2025.2531667","DOIUrl":null,"url":null,"abstract":"<p><p>Anaerobic digestion (AD) is a sustainable technology that converts organic waste into renewable energy while reducing greenhouse gas emissions. Recent studies suggest that adding CO₂ to the AD process can improve methane production through different mechanisms. This review examines four key ways CO₂ supplementation can enhance methane yield: (1) direct conversion of CO₂ into acetate by homoacetogens, (2) direct methanation of CO₂ by hydrogenotrophic methanogens, (3) improved breakdown of organic material due to higher enzyme activity, and (4) better digester conditions through pH regulation and reduced ammonia toxicity. By analyzing microbial interactions and process improvements, this paper highlights knowledge gaps and the need for further research to optimize CO₂ addition in different operational settings. These findings are expected to contribute to the development of cost-effective and efficient AD systems that support energy recovery and environmental sustainability.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2531667"},"PeriodicalIF":4.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineered","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21655979.2025.2531667","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic digestion (AD) is a sustainable technology that converts organic waste into renewable energy while reducing greenhouse gas emissions. Recent studies suggest that adding CO₂ to the AD process can improve methane production through different mechanisms. This review examines four key ways CO₂ supplementation can enhance methane yield: (1) direct conversion of CO₂ into acetate by homoacetogens, (2) direct methanation of CO₂ by hydrogenotrophic methanogens, (3) improved breakdown of organic material due to higher enzyme activity, and (4) better digester conditions through pH regulation and reduced ammonia toxicity. By analyzing microbial interactions and process improvements, this paper highlights knowledge gaps and the need for further research to optimize CO₂ addition in different operational settings. These findings are expected to contribute to the development of cost-effective and efficient AD systems that support energy recovery and environmental sustainability.

探讨在厌氧消化过程中补充CO2提高甲烷产量的机制。
厌氧消化(AD)是一种将有机废物转化为可再生能源,同时减少温室气体排放的可持续技术。最近的研究表明,在AD过程中加入CO 2可以通过不同的机制提高甲烷产量。本文综述了补充CO 2提高甲烷产量的四个关键途径:(1)同质产氢菌将CO 2直接转化为乙酸,(2)氢养产甲烷菌将CO 2直接甲烷化,(3)由于酶活性提高而改善有机物的分解,(4)通过调节pH和降低氨毒性来改善沼气池条件。通过分析微生物相互作用和工艺改进,本文强调了知识差距和进一步研究的必要性,以优化不同操作环境下的CO 2添加。预计这些发现将有助于开发具有成本效益和效率的AD系统,以支持能源回收和环境可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineered
Bioengineered BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
8.20
自引率
28.60%
发文量
1114
审稿时长
17 weeks
期刊介绍: Bioengineered provides a platform for publishing high quality research on any aspect of genetic engineering which involves the generation of recombinant strains (both prokaryote and eukaryote) for beneficial applications in food, medicine, industry, environment and bio-defense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信