{"title":"Advancements in genetic engineering for enhanced Polyhydroxyalkanoates (PHA) production: a comprehensive review of metabolic pathway manipulation and gene deletion strategies.","authors":"Raghavendra Paduvari, Divyashree Mysore Somashekara","doi":"10.1080/21655979.2025.2458363","DOIUrl":"10.1080/21655979.2025.2458363","url":null,"abstract":"<p><p>Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production. An improvement in the PHA production can be achieved by genetically engineering the wild-type bacterial strains by removing competitive pathways that divert the metabolites away from PHA biosynthesis, cloning strong promotors to overexpress the genes involved in PHA biosynthesis and constructing non-native metabolic pathways that feed the metabolites for PHA production. The desired monomers in the PHA polymers were obtained by elimination of genes involved in PHA biosynthetic pathway. The chain length degradation specific-gene deletion of β-oxidation pathway resulted in the accumulation of PHA monomers having high carbon chain length. A controlled accumulation of monomers in the PHA polymer was achieved by constructing novel pathways in the bacteria and deleting native genes of competitive pathways from the genome of non-PHA producers. The present review attempts to showcase the novel genetic modification approaches conducted so far to enhance the PHA production with a special focus on metabolic pathway gene deletion in various bacteria.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458363"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491945
{"title":"Statement of Retraction: Homeodomain-containing gene 10 contributed to breast cancer malignant behaviors by activating Interleukin-6/Janus kinase 2/Signal transducer and activator of transcription 3 pathway.","authors":"","doi":"10.1080/21655979.2025.2491945","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491945","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491945"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-02-04DOI: 10.1080/21655979.2025.2458366
Negar Basereh, Steven Wainaina, Amir Mahboubi, Mohammad J Taherzadeh
{"title":"Fractionation of waste-derived volatile fatty acids by multi-stage adsorption using activated charcoal and Diaion HP-20 resin.","authors":"Negar Basereh, Steven Wainaina, Amir Mahboubi, Mohammad J Taherzadeh","doi":"10.1080/21655979.2025.2458366","DOIUrl":"10.1080/21655979.2025.2458366","url":null,"abstract":"<p><p>Substituting waste-derived Volatile Fatty Acids (VFAs) with their conventionally applied fossil-derived counterparts in a spectrum of industrial applications necessitates its proper fractionation into individual acids. This study explored a multi-stage batch adsorption approach for fractionating acidogenic fermentation VFAs effluents from food waste (FW) and chicken manure (CKM) using Diaion HP-20 and activated charcoal. Initial screening at different washing conditions and pH (3.5 and 6.5) revealed the unwashed granular-activated charcoal (GAC-Unwashed) and milli-Q water-washed Diaion (DI-MQ Washed) as the most promising candidates for VFA fractionation of a synthetic VFA mixture at 4 gL<sup>-1</sup>. At pH 3.5 (<math><mo><</mo><mi>p</mi><mrow><msub><mi>K</mi><mi>a</mi></msub></mrow></math>), GAC-Unwashed adsorbed 2-6 carbon atom VFAs completely, while DI-MQ Washed exhibited minimal adsorption of acetic acid (AA) (8%), favoring caproic (CA) and valeric acids (VA) (<math><mo>></mo></math>97%). While at pH 6.5 <math><mo>(</mo><mo>></mo><mi>p</mi><mrow><msub><mi>K</mi><mi>a</mi></msub></mrow></math>), GAC-Unwashed selectively targeted VA (79%) and CA (100%). Fractionating VFAs from FW and CKM were conducted in a two-stage adsorption process with optimal results being achieved using GAC-Unwashed at FW initial pH (5.3) and DI-MQ Washed at pH below CKM <math><mi>p</mi><mrow><msub><mi>K</mi><mi>a</mi></msub></mrow></math> (3.5), respectively. The first adsorption stage primarily adsorbed higher molecular weight (MW) VFAs (FW:99.1% CA, CKM:72.9% butyric acid (BA)) with a minor quantity of lower ones (FW:56.5% BA, CKM:29.3% propionic acid (PA)), leaving AA intact. Subsequent stages aimed to isolate AA by adsorbing the remaining low MW VFA (FW:58.9% BA, CKM:27.8% PA, 70% BA) other than AA, indicating effluent fractionation while preserving and purifying AA. Applied selective multi-stage adsorption approach offers a promising method to broaden waste-derived VFA applications.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458366"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-15DOI: 10.1080/21655979.2025.2491936
{"title":"Statement of Retraction: Graphene based scaffolds on bone tissue engineering.","authors":"","doi":"10.1080/21655979.2025.2491936","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491936","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491936"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491949
{"title":"Statement of Retraction: miR-647 inhibits hepatocellular carcinoma cell progression by targeting protein tyrosine phosphatase receptor type F.","authors":"","doi":"10.1080/21655979.2025.2491949","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491949","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491949"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143962772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491952
{"title":"Statement of Retraction: Role of lncRNA LINC01194 in hepatocellular carcinoma via the miR-655-3p/SMAD family member 5 axis.","authors":"","doi":"10.1080/21655979.2025.2491952","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491952","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491952"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoregulation of the biosynthetic activity of fungus <i>Inonotus obliquus</i> using colloidal solutions of biogenic metal nanoparticles and low-intensity laser radiation.","authors":"Oksana Mykchaylova, Anatoliy Negriyko, Nadiia Matvieieva, Kostiantyn Lopatko, Natalia Poyedinok","doi":"10.1080/21655979.2025.2458371","DOIUrl":"10.1080/21655979.2025.2458371","url":null,"abstract":"<p><p>This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom <i>Inonotus obliquus in vitro</i>. Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of <i>I. obliquus</i> (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of <i>I. obliquus</i> mycelia by 12.3-35.4%. Silver nanoparticles (AgNPs) in a nutrient medium suppressed the biosynthesis of extracellular polysaccharides, whereas laser irradiation in the same medium increased the synthesis of intracellular polysaccharides by 9.7 times. Magnesium nanoparticles (MgNPs) and iron nanoparticles (FeNPs) inhibited the synthesis of intracellular polysaccharides in the mycelial mass of <i>I. obliquus</i>. At the same time, laser irradiation of the inoculum with MgNPs, on the contrary, induced a sharp increase in the amount of polysaccharides in the culture liquid (20 times). Treatment of the inoculum in a medium with nanoparticles with a laser caused an intensification of the synthesis of flavonoids in the mycelial mass and an increase in the synthesis of melanin pigments (25-140%). The results obtained suggest the possibility of the complex use of colloidal solutions of Fe, Ag, and Mg nanoparticles and low-intensity laser radiation as environmentally friendly factors for regulating biosynthetic activity in the biotechnology of cultivating the valuable medicinal mushroom <i>I. obliquus</i>.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458371"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}