Photoregulation of the biosynthetic activity of fungus Inonotus obliquus using colloidal solutions of biogenic metal nanoparticles and low-intensity laser radiation.

IF 4.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioengineered Pub Date : 2025-12-01 Epub Date: 2025-01-28 DOI:10.1080/21655979.2025.2458371
Oksana Mykchaylova, Anatoliy Negriyko, Nadiia Matvieieva, Kostiantyn Lopatko, Natalia Poyedinok
{"title":"Photoregulation of the biosynthetic activity of fungus <i>Inonotus obliquus</i> using colloidal solutions of biogenic metal nanoparticles and low-intensity laser radiation.","authors":"Oksana Mykchaylova, Anatoliy Negriyko, Nadiia Matvieieva, Kostiantyn Lopatko, Natalia Poyedinok","doi":"10.1080/21655979.2025.2458371","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom <i>Inonotus obliquus in vitro</i>. Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of <i>I. obliquus</i> (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of <i>I. obliquus</i> mycelia by 12.3-35.4%. Silver nanoparticles (AgNPs) in a nutrient medium suppressed the biosynthesis of extracellular polysaccharides, whereas laser irradiation in the same medium increased the synthesis of intracellular polysaccharides by 9.7 times. Magnesium nanoparticles (MgNPs) and iron nanoparticles (FeNPs) inhibited the synthesis of intracellular polysaccharides in the mycelial mass of <i>I. obliquus</i>. At the same time, laser irradiation of the inoculum with MgNPs, on the contrary, induced a sharp increase in the amount of polysaccharides in the culture liquid (20 times). Treatment of the inoculum in a medium with nanoparticles with a laser caused an intensification of the synthesis of flavonoids in the mycelial mass and an increase in the synthesis of melanin pigments (25-140%). The results obtained suggest the possibility of the complex use of colloidal solutions of Fe, Ag, and Mg nanoparticles and low-intensity laser radiation as environmentally friendly factors for regulating biosynthetic activity in the biotechnology of cultivating the valuable medicinal mushroom <i>I. obliquus</i>.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458371"},"PeriodicalIF":4.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineered","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21655979.2025.2458371","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom Inonotus obliquus in vitro. Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of I. obliquus (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of I. obliquus mycelia by 12.3-35.4%. Silver nanoparticles (AgNPs) in a nutrient medium suppressed the biosynthesis of extracellular polysaccharides, whereas laser irradiation in the same medium increased the synthesis of intracellular polysaccharides by 9.7 times. Magnesium nanoparticles (MgNPs) and iron nanoparticles (FeNPs) inhibited the synthesis of intracellular polysaccharides in the mycelial mass of I. obliquus. At the same time, laser irradiation of the inoculum with MgNPs, on the contrary, induced a sharp increase in the amount of polysaccharides in the culture liquid (20 times). Treatment of the inoculum in a medium with nanoparticles with a laser caused an intensification of the synthesis of flavonoids in the mycelial mass and an increase in the synthesis of melanin pigments (25-140%). The results obtained suggest the possibility of the complex use of colloidal solutions of Fe, Ag, and Mg nanoparticles and low-intensity laser radiation as environmentally friendly factors for regulating biosynthetic activity in the biotechnology of cultivating the valuable medicinal mushroom I. obliquus.

生物源性金属纳米粒子胶体溶液和低强度激光辐射对光调节真菌Inonotus obliquus的生物合成活性。
本文介绍了纳米颗粒胶体溶液与低强度激光辐射联合应用对药用菌体外生物合成活性的影响。传统的真菌学方法、生物金属胶体溶液和独特的光生物学方法也被应用。结果表明,不同金属纳米颗粒的胶体溶液均能提高斜曲菌菌丝的生长特性(55 ~ 60%),而激光照射真菌接种物在纳米颗粒培养基中使斜曲菌菌丝的生长活性降低12.3 ~ 35.4%。纳米银颗粒(AgNPs)在营养介质中抑制胞外多糖的生物合成,而激光照射在相同的培养基中使胞内多糖的合成增加了9.7倍。镁纳米粒子(MgNPs)和铁纳米粒子(FeNPs)抑制了斜菌菌丝团胞内多糖的合成。与此同时,用MgNPs激光照射接种物,相反,诱导培养液中多糖的数量急剧增加(20倍)。在激光纳米颗粒培养基中处理后,菌丝团中黄酮类化合物的合成增强,黑色素的合成增加(25-140%)。研究结果表明,铁、银、镁纳米颗粒胶体溶液和低强度激光辐射作为环境友好因子,可在药用蘑菇培养过程中调控其生物合成活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineered
Bioengineered BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
8.20
自引率
28.60%
发文量
1114
审稿时长
17 weeks
期刊介绍: Bioengineered provides a platform for publishing high quality research on any aspect of genetic engineering which involves the generation of recombinant strains (both prokaryote and eukaryote) for beneficial applications in food, medicine, industry, environment and bio-defense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信