BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491922
{"title":"Statement of Retraction: LncRNA ASMTL-AS1/microRNA-1270 differentiate prognostic groups in gastric cancer and influence cell proliferation, migration and invasion.","authors":"","doi":"10.1080/21655979.2025.2491922","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491922","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491922"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143962771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491957
{"title":"Statement of Retraction: LncRNA SNHG12 in extracellular vesicles derived from carcinoma-associated fibroblasts promotes cisplatin resistance in non-small cell lung cancer cells.","authors":"","doi":"10.1080/21655979.2025.2491957","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491957","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491957"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491941
{"title":"Statement of Retraction: CircSLC7A6 promotes the progression of Wilms' tumor via microRNA-107/ ABL proto-oncogene 2 axis.","authors":"","doi":"10.1080/21655979.2025.2491941","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491941","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491941"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-01-29DOI: 10.1080/21655979.2025.2458376
Hyerang Eom, Yeon-Jae Choi, Rutuja Nandre, Minseek Kim, Youn-Lee Oh, Sinil Kim, Takehito Nakazawa, Yoichi Honda, Hyeon-Su Ro
{"title":"Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in <i>Ganoderma lucidum</i>.","authors":"Hyerang Eom, Yeon-Jae Choi, Rutuja Nandre, Minseek Kim, Youn-Lee Oh, Sinil Kim, Takehito Nakazawa, Yoichi Honda, Hyeon-Su Ro","doi":"10.1080/21655979.2025.2458376","DOIUrl":"10.1080/21655979.2025.2458376","url":null,"abstract":"<p><p>Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs. Co-transformation of donor DNAs with RNP targeting the <i>pyrG</i> gene in <i>Ganoderma lucidum</i> yielded 184 transformants without homologous arms and 781 with 300-bp homologous arms (HR_donor DNAs). Restriction analysis and sequencing identified 122 hR_donor DNA transformants with complete donor DNA sequences, achieving 15.6% HDR efficiency (122/781), contrasting with 8 instances via NHEJ from the 184 transformants. These findings highlight the viability of HDR for precise genomic editing in mushrooms, enabling targeted modifications to enhance functionalities.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458376"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491959
{"title":"Statement of Retraction: Knockdown of hypoxia-inducible factor 1-alpha (HIF1α) interferes with angiopoietin-like protein 2 (ANGPTL2) to attenuate high glucose-triggered hypoxia/reoxygenation injury in cardiomyocytes.","authors":"","doi":"10.1080/21655979.2025.2491959","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491959","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491959"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-07-21DOI: 10.1080/21655979.2025.2529670
Madhu Subramani, K Suthindhiran
{"title":"Enzymatic recovery of nano-silver from used X-ray films by alkaline protease from <i>Streptomyces</i> sp. VITGSS4.","authors":"Madhu Subramani, K Suthindhiran","doi":"10.1080/21655979.2025.2529670","DOIUrl":"10.1080/21655979.2025.2529670","url":null,"abstract":"<p><p>Seventeen halotolerant bacteria were isolated from the Muthupettai mangroves, Tamil Nadu, India, with eight exhibiting protease production. The most potent isolate, VITGS4, identified as <i>Streptomyces</i> sp. via polyphasic taxonomy, yielded 470 U mL<sup>-1</sup>. Response surface methodology (RSM) optimized protease production by Box-Behnken Design (BBD) using casein (5.5% w/v), pH 7.5, and 9.5 days incubation, achieving 282 U mL<sup>-1</sup>. The recovered protease was partially purified through acetone precipitation (50% acetone), followed by dialysis, and its purity was estimated through HPLC (high pressure liquid chromatography). Enzyme kinetics revealed a Km of 0.347 µM, a Vo of 0.464 µM min<sup>-1</sup>, a Vmax of 3.167 µM min<sup>-1</sup>, and a Kcat of 0.0002 min<sup>-1</sup>. The enzyme was identified as a halo-thermo-alkaline serine protease, optimally active at pH 8 and 45°C, with activity significantly inhibited by Pb<sup>2+</sup> and Hg<sup>2+</sup> and enhanced by Zn<sup>2+</sup> (95%). Notably, PMSF strongly inhibited protease activity, indicating a serine protease. This protease was successfully employed to recover 726 mg of silver slurry (537 µg mL<sup>-1</sup> silver) from X-ray films. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of silver (2.2% in the analyzed region), while zeta potential (-26.35 mV) and hydrodynamic diameter (89.94 nm) analyses indicated stable silver nanoparticles. These results demonstrate the potential of marine actinobacteria-derived proteases for efficient silver recovery, offering promising applications in therapeutic and industrial fields.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2529670"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491940
{"title":"Statement of Retraction: Sulforaphane ameliorates amyloid-β-induced inflammatory injury by suppressing the PARP1/SIRT1 pathway in retinal pigment epithelial cells.","authors":"","doi":"10.1080/21655979.2025.2491940","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491940","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491940"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143969404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-04-23DOI: 10.1080/21655979.2025.2491956
{"title":"Statement of Retraction: Identification of a novel circular RNA circZNF652/miR-486-5p/SERPINE1 signaling cascade that regulates cancer aggressiveness in glioblastoma (GBM).","authors":"","doi":"10.1080/21655979.2025.2491956","DOIUrl":"https://doi.org/10.1080/21655979.2025.2491956","url":null,"abstract":"","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2491956"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143970972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}