Biorefining spent substrates of shiitake (Lentinula edodes) and oyster mushroom (Pleurotus ostreatus): enzymatic saccharification of cellulose and xylan, with lignin recovery from residues.

IF 4.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioengineered Pub Date : 2025-12-01 Epub Date: 2025-07-30 DOI:10.1080/21655979.2025.2536443
Sarah J Klausen, Luis A Romero-Soto, Ayesha Liaqat, Zahra Dehghanmanshadi, Knut O Strætkvern, Shaojun Xiong, Carlos Martín
{"title":"Biorefining spent substrates of shiitake (<i>Lentinula edodes</i>) and oyster mushroom (<i>Pleurotus ostreatus</i>): enzymatic saccharification of cellulose and xylan, with lignin recovery from residues.","authors":"Sarah J Klausen, Luis A Romero-Soto, Ayesha Liaqat, Zahra Dehghanmanshadi, Knut O Strætkvern, Shaojun Xiong, Carlos Martín","doi":"10.1080/21655979.2025.2536443","DOIUrl":null,"url":null,"abstract":"<p><p>Spent mushroom substrate (SMS), the main by-product of mushroom cultivation, is a source of sugars that can be released by saccharification. This work aimed at investigating the enzymatic saccharification of the polysaccharides of the SMS of shiitake (<i>Lentinula edodes</i>) and oyster mushroom (<i>Pleurotus ostreatus</i>) and exploring the lignin extraction from the saccharification residues. First, analytical enzymatic saccharification (AES) with a cellulase cocktail and an experimental hemicellulase-rich preparation was applied. AES revealed higher digestibility of both polysaccharides for shiitake SMS than for oyster mushroom SMS. Using the cellulase cocktail, shiitake SMS resulted in a digestibility above 80% and 70% (w/w) for cellulose and xylan, respectively, while the maximum values for oyster mushroom SMS were 52% and 32% (w/w). The experimental enzyme preparation resulted in lower cellulose digestibility and higher xylan digestibility. Still, the saccharification trend between the two SMS types remained unchanged. To enhance the enzymatic saccharification of oyster mushroom SMS, hydrothermal treatment was applied. The treatment improved the enzymatic digestibility of cellulose by up to 84%. A validation experiment at larger scale showed that hydrothermally treated oyster mushroom SMS had a comparable overall conversion with non-treated shiitake SMS. Following a biorefinery strategy, lignin was extracted from the residues of the preparative enzymatic saccharification using the green solvent γ-valerolactone under different temperatures and holding times. The extracted product contained 98.8% lignin and did not contain cellulose or xylan. The results of this study provide the grounds for biorefinery processes enabling recovery of bioactive compounds, fermentable sugars, and high-quality lignin from SMS.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2536443"},"PeriodicalIF":4.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineered","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21655979.2025.2536443","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spent mushroom substrate (SMS), the main by-product of mushroom cultivation, is a source of sugars that can be released by saccharification. This work aimed at investigating the enzymatic saccharification of the polysaccharides of the SMS of shiitake (Lentinula edodes) and oyster mushroom (Pleurotus ostreatus) and exploring the lignin extraction from the saccharification residues. First, analytical enzymatic saccharification (AES) with a cellulase cocktail and an experimental hemicellulase-rich preparation was applied. AES revealed higher digestibility of both polysaccharides for shiitake SMS than for oyster mushroom SMS. Using the cellulase cocktail, shiitake SMS resulted in a digestibility above 80% and 70% (w/w) for cellulose and xylan, respectively, while the maximum values for oyster mushroom SMS were 52% and 32% (w/w). The experimental enzyme preparation resulted in lower cellulose digestibility and higher xylan digestibility. Still, the saccharification trend between the two SMS types remained unchanged. To enhance the enzymatic saccharification of oyster mushroom SMS, hydrothermal treatment was applied. The treatment improved the enzymatic digestibility of cellulose by up to 84%. A validation experiment at larger scale showed that hydrothermally treated oyster mushroom SMS had a comparable overall conversion with non-treated shiitake SMS. Following a biorefinery strategy, lignin was extracted from the residues of the preparative enzymatic saccharification using the green solvent γ-valerolactone under different temperatures and holding times. The extracted product contained 98.8% lignin and did not contain cellulose or xylan. The results of this study provide the grounds for biorefinery processes enabling recovery of bioactive compounds, fermentable sugars, and high-quality lignin from SMS.

香菇(Lentinula edodes)和平菇(Pleurotus ostreatus)废底物的生物精制:纤维素和木聚糖的酶糖化,从残留物中回收木质素。
废蘑菇底物(SMS)是蘑菇栽培的主要副产物,是糖的来源,可以通过糖化释放。研究了香菇(Lentinula edodes)和平菇(Pleurotus ostreatus)多糖的酶解糖化过程,并对糖化残渣中木质素的提取进行了研究。首先,采用混合纤维素酶和富含半纤维素酶的实验制备分析酶糖化(AES)。AES测定结果表明,香菇多糖的消化率高于平菇多糖。使用纤维素酶混合物时,香菇对纤维素和木聚糖的消化率分别达到80%和70%以上(w/w),而对平菇的最高消化率分别为52%和32% (w/w)。实验酶制剂降低了纤维素消化率,提高了木聚糖消化率。然而,两种SMS类型之间的糖化趋势保持不变。为提高平菇SMS的酶解糖化效果,采用水热法处理。该处理使纤维素的酶消化率提高了84%。更大规模的验证实验表明,水热处理的平菇SMS与未处理的香菇SMS具有相当的总体转化率。采用生物精馏的方法,利用绿色溶剂γ-戊内酯在不同温度和保温时间下,从制备性酶糖化剩余物中提取木质素。提取的产物木质素含量为98.8%,不含纤维素和木聚糖。本研究的结果为生物精炼工艺提供了基础,使生物活性化合物、可发酵糖和高质量木质素能够从SMS中回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineered
Bioengineered BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
8.20
自引率
28.60%
发文量
1114
审稿时长
17 weeks
期刊介绍: Bioengineered provides a platform for publishing high quality research on any aspect of genetic engineering which involves the generation of recombinant strains (both prokaryote and eukaryote) for beneficial applications in food, medicine, industry, environment and bio-defense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信