骨关节炎分子信号通路及软骨再生生物材料研究进展。

IF 4.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioengineered Pub Date : 2025-12-01 Epub Date: 2025-05-07 DOI:10.1080/21655979.2025.2501880
Samson Prince Hiruthyaswamy, Arohi Bose, Ayushi Upadhyay, Tiasa Raha, Shangomitra Bhattacharjee, Isheeta Singha, Swati Ray, Nazarene Marylene Nicky Macarius, Pragasam Viswanathan, Kanagavel Deepankumar
{"title":"骨关节炎分子信号通路及软骨再生生物材料研究进展。","authors":"Samson Prince Hiruthyaswamy, Arohi Bose, Ayushi Upadhyay, Tiasa Raha, Shangomitra Bhattacharjee, Isheeta Singha, Swati Ray, Nazarene Marylene Nicky Macarius, Pragasam Viswanathan, Kanagavel Deepankumar","doi":"10.1080/21655979.2025.2501880","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2501880"},"PeriodicalIF":4.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064066/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular signaling pathways in osteoarthritis and biomaterials for cartilage regeneration: a review.\",\"authors\":\"Samson Prince Hiruthyaswamy, Arohi Bose, Ayushi Upadhyay, Tiasa Raha, Shangomitra Bhattacharjee, Isheeta Singha, Swati Ray, Nazarene Marylene Nicky Macarius, Pragasam Viswanathan, Kanagavel Deepankumar\",\"doi\":\"10.1080/21655979.2025.2501880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.</p>\",\"PeriodicalId\":8919,\"journal\":{\"name\":\"Bioengineered\",\"volume\":\"16 1\",\"pages\":\"2501880\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineered\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21655979.2025.2501880\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineered","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21655979.2025.2501880","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨关节炎是一种常见的退行性关节疾病,以软骨退化、滑膜炎症和软骨下骨改变为特征,导致慢性疼痛和关节功能障碍。常规治疗能缓解症状,但不能阻止疾病进展。生物材料、分子信号调节和基因编辑技术的最新进展提供了有希望的治疗策略。这篇综述探讨了骨关节炎的关键分子通路,包括成纤维细胞生长因子、磷酸肌肽3-激酶/Akt和骨形态发生蛋白信号,强调了它们在软骨细胞存活、细胞外基质重塑和炎症中的作用。基于生物材料的干预措施,如水凝胶、纳米颗粒和壳聚糖支架,已被证明具有增强软骨再生和靶向药物递送的潜力。此外,CRISPR/Cas9基因编辑有望修改骨关节炎相关基因以恢复软骨完整性。再生生物材料与精准医学和分子疗法的结合代表了缓解骨关节炎进展的新途径。未来的研究应集中在优化生物材料特性、提高基因编辑效率和开发个性化治疗策略上。生物工程和分子科学的融合为改善骨关节炎治疗中的关节功能和患者生活质量提供了新的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular signaling pathways in osteoarthritis and biomaterials for cartilage regeneration: a review.

Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineered
Bioengineered BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
8.20
自引率
28.60%
发文量
1114
审稿时长
17 weeks
期刊介绍: Bioengineered provides a platform for publishing high quality research on any aspect of genetic engineering which involves the generation of recombinant strains (both prokaryote and eukaryote) for beneficial applications in food, medicine, industry, environment and bio-defense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信