{"title":"骨关节炎分子信号通路及软骨再生生物材料研究进展。","authors":"Samson Prince Hiruthyaswamy, Arohi Bose, Ayushi Upadhyay, Tiasa Raha, Shangomitra Bhattacharjee, Isheeta Singha, Swati Ray, Nazarene Marylene Nicky Macarius, Pragasam Viswanathan, Kanagavel Deepankumar","doi":"10.1080/21655979.2025.2501880","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2501880"},"PeriodicalIF":4.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064066/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular signaling pathways in osteoarthritis and biomaterials for cartilage regeneration: a review.\",\"authors\":\"Samson Prince Hiruthyaswamy, Arohi Bose, Ayushi Upadhyay, Tiasa Raha, Shangomitra Bhattacharjee, Isheeta Singha, Swati Ray, Nazarene Marylene Nicky Macarius, Pragasam Viswanathan, Kanagavel Deepankumar\",\"doi\":\"10.1080/21655979.2025.2501880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.</p>\",\"PeriodicalId\":8919,\"journal\":{\"name\":\"Bioengineered\",\"volume\":\"16 1\",\"pages\":\"2501880\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineered\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21655979.2025.2501880\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineered","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21655979.2025.2501880","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Molecular signaling pathways in osteoarthritis and biomaterials for cartilage regeneration: a review.
Osteoarthritis is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone alterations, leading to chronic pain and joint dysfunction. Conventional treatments provide symptomatic relief but fail to halt disease progression. Recent advancements in biomaterials, molecular signaling modulation, and gene-editing technologies offer promising therapeutic strategies. This review explores key molecular pathways implicated in osteoarthritis, including fibroblast growth factor, phosphoinositide 3-kinase/Akt, and bone morphogenetic protein signaling, highlighting their roles in chondrocyte survival, extracellular matrix remodeling, and inflammation. Biomaterial-based interventions such as hydrogels, nanoparticles, and chitosan-based scaffolds have demonstrated potential in enhancing cartilage regeneration and targeted drug delivery. Furthermore, CRISPR/Cas9 gene editing holds promise in modifying osteoarthritis-related genes to restore cartilage integrity. The integration of regenerative biomaterials with precision medicine and molecular therapies represents a novel approach for mitigating osteoarthritis progression. Future research should focus on optimizing biomaterial properties, refining gene-editing efficiency, and developing personalized therapeutic strategies. The convergence of bioengineering and molecular science offers new hope for improving joint function and patient quality of life in osteoarthritis management.
期刊介绍:
Bioengineered provides a platform for publishing high quality research on any aspect of genetic engineering which involves the generation of recombinant strains (both prokaryote and eukaryote) for beneficial applications in food, medicine, industry, environment and bio-defense.