Biofouling最新文献

筛选
英文 中文
Zerumbone disrupts mixed biofilms of Candida albicans and Streptococcus mutans on acrylic resin. Zerumbone 可破坏丙烯酸树脂上的白色念珠菌和变异链球菌混合生物膜。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-12-20 DOI: 10.1080/08927014.2024.2441259
Ana Luíza Gorayb Pereira, César Augusto Abreu Pereira, Luana Mendonça Dias, Janaína Habib Jorge, Ana Cláudia Pavarina
{"title":"Zerumbone disrupts mixed biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i> on acrylic resin.","authors":"Ana Luíza Gorayb Pereira, César Augusto Abreu Pereira, Luana Mendonça Dias, Janaína Habib Jorge, Ana Cláudia Pavarina","doi":"10.1080/08927014.2024.2441259","DOIUrl":"https://doi.org/10.1080/08927014.2024.2441259","url":null,"abstract":"<p><p>The efficacy of Zerumbone (ZER) against mixed biofilms of fluconazole-resistant <i>Candida albicans</i> (ATCC 96901) and <i>Streptococcus mutans</i> (UA159) was evaluated. Biofilms were cultivated on acrylic resin specimens for 48 h, with alternating supplementation of glucose and sucrose. ZER's ability to inhibit biofilm formation (pre-treatment) and eradicate mature biofilms (post-treatment) was assessed. Control groups were treated with Chlorhexidine (CHX), Nystatin (NYS), Penicillin (ATB), and distilled water. The efficacy was measured by colony forming units (CFU/mm<sup>2</sup>) counts, biomass and biofilm's matrix components quantification (water-soluble polysaccharides [WSP], alkali-soluble polysaccharides [ASPs], proteins, and extracellular DNA [eDNA]). Data were analyzed by one-way ANOVA with Tukey's or Gammes-Howell post-hoc test for normal data and Kruskal-Wallis test for data that did not meet the assumption of normality (α = 0,05). In the biofilm inhibition assay, ZER decreased total microbiota (<i>C. albicans</i> + <i>S. mutans</i>) (2.7 log<sub>10</sub>; <i>p</i> < 0.005), <i>C. albicans</i> (1.4 log<sub>10</sub>; <i>p</i> < 0.038) and <i>S. mutans</i> (1.9 log<sub>10</sub>; <i>p</i> < 0.048) counting (vs control group), and biofilm components [insoluble proteins: 37% (<i>p</i> < 0.001); WSP: 13% (<i>p</i> < 0.042); ASP: 46% (<i>p</i> < 0.001); eDNA: 11% (<i>p</i> < 0.048)]. Post-treatment with ZER reduced total microbiota (3.2 log<sub>10</sub>; <i>p</i> < 0.001), <i>C. albicans</i> (3 log<sub>10</sub>; <i>p</i> < 0.001) and <i>S. mutans</i> (2 log<sub>10</sub>; <i>p</i> < 0.001) counting (vs control group), and biofilm components [soluble proteins: 20% (<i>p</i> < 0.001); WSP: 20% (<i>p</i> < 0.001); ASP: 51% (<i>p</i> < 0.001); and eDNA: 33% (<i>p</i> < 0.001)]. The positive control groups demonstrated similar or lower efficacy than ZER under all experimental conditions. ZER demonstrates efficacy against mixed biofilms by reducing <i>C. albicans</i> and <i>S. mutans</i> counting and disrupting the extracellular matrix in both assays.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-16"},"PeriodicalIF":2.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bactericidal and antibiofilm activities of Piper betle extract against Burkholderia pseudomallei: in vitro and in silico approaches. 瓜蒌提取物对假马勒伯克霍尔德氏菌的杀菌和抗生物膜活性:体外和硅学方法。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-12-17 DOI: 10.1080/08927014.2024.2438689
Komgrit Eawsakul, Wiyada Kwanhian Klangbud, Phirabhat Saengsawang, Tassanee Ongtanasup, Kunchaphorn Ratchasong, Ratchadaporn Boripun, Veeranoot Nissapatorn, Maria de Lourdes Pereira, Conny Turni, Fonthip Makkliang, Kawalin Pumbut, Watcharapong Mitsuwan
{"title":"Bactericidal and antibiofilm activities of <i>Piper betle</i> extract against <i>Burkholderia pseudomallei</i>: <i>in vitro</i> and <i>in silico</i> approaches.","authors":"Komgrit Eawsakul, Wiyada Kwanhian Klangbud, Phirabhat Saengsawang, Tassanee Ongtanasup, Kunchaphorn Ratchasong, Ratchadaporn Boripun, Veeranoot Nissapatorn, Maria de Lourdes Pereira, Conny Turni, Fonthip Makkliang, Kawalin Pumbut, Watcharapong Mitsuwan","doi":"10.1080/08927014.2024.2438689","DOIUrl":"https://doi.org/10.1080/08927014.2024.2438689","url":null,"abstract":"<p><p><i>Burkholderia pseudomallei</i> biofilm is a significant virulence factor in infection. This study aimed to investigate antibacterial and antibiofilm activities of <i>Piper betle</i> extract against <i>B. pseudomallei</i>. The MIC and MBC values of the extract against the isolates were 0.5-1.0 mg/mL. At 2 × MIC, the cells showed cell shrinkage and abnormalities. At 1/2 × MIC, the extract displayed 40-71% inhibition of biofilm formation. At 8 × MIC, the extract reduced the viability of mature biofilms by 60-86%. Hydroxychavicol and eugenol, the main compounds in the extract, showed binding activity to CdpA, an enzyme implicated in biofilms as observed by <i>in silico</i> studies. Hydroxychavicol exhibited the highest affinity for CdpA, with a distance of 2.27 Å. Molecular dynamics simulations revealed that hydroxychavicol forms a stable complex with cyclic di-GMP phosphodiesterase, maintaining protein structural integrity with minimal conformational changes. The results suggested that <i>Piper betle</i> may have medicinal benefits by inhibiting biofilm-related infections.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-16"},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors affecting the spatial and temporal distribution of biofouling communities on Atlantic salmon (Salmo salar) farms: insights from the Broughton Archipelago, British Columbia, Canada. 影响大西洋鲑鱼(Salmo salar)养殖场生物污染群落时空分布的因素:来自加拿大不列颠哥伦比亚省布劳顿群岛的见解
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-12-12 DOI: 10.1080/08927014.2024.2430353
Devan L Johnson, Christopher M Pearce, Mark S Flaherty, Laura L E Cowen, Morgan J Black, Sandra V Worst, Raquel A Greiter Loerzer, Kaitlin C Guitard, Matthew McGoveran, Bogdan Vornicu
{"title":"Factors affecting the spatial and temporal distribution of biofouling communities on Atlantic salmon (<i>Salmo salar</i>) farms: insights from the Broughton Archipelago, British Columbia, Canada.","authors":"Devan L Johnson, Christopher M Pearce, Mark S Flaherty, Laura L E Cowen, Morgan J Black, Sandra V Worst, Raquel A Greiter Loerzer, Kaitlin C Guitard, Matthew McGoveran, Bogdan Vornicu","doi":"10.1080/08927014.2024.2430353","DOIUrl":"https://doi.org/10.1080/08927014.2024.2430353","url":null,"abstract":"<p><p>Biofouling communities were examined at five depths at two salmon farms (Doctor Islets (DI), Wicklow Point (WP)) in British Columbia, Canada from April/May to October 2020. In addition, various water quality parameters were measured and the jellyfish numbers were quantified. Biofouling communities were mainly composed of Mollusca (primarily <i>Mytilus</i> spp.), arthropods (mostly harpacticoids), and hydroids (predominantly <i>Obelia</i> sp.), while jellyfish samples were made up mostly of medusa-form <i>Obelia</i> sp. At DI, all variables except ammonia were associated with biofouling counts, all variables except depth were associated with hydroid biomass, while only temperature, dissolved oxygen, ammonia, and nitrate were associated with jellyfish. At WP, all variables except phosphate and silica were associated with biofouling counts, only depth was associated with hydroid biomass, and only ammonia was associated with jellyfish. Insights into what environmental variables are correlated with biofouling organisms and jellyfish may assist with the development of effective mitigation strategies.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-16"},"PeriodicalIF":2.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rolling down the pilus formation of gram-positive bacteria: underlining the importance of Sortase C as a drug target. 革兰氏阳性细菌的柔毛形成滚动:强调排序酶 C 作为药物靶点的重要性。
IF 2.6 3区 生物学
Biofouling Pub Date : 2024-12-10 DOI: 10.1080/08927014.2024.2426167
Himanshi Kain, Ena Gupta, Prashant Sharma, Akanksha Haldiya, Vijay Kumar Srivastava, Ravi Ranjan Kumar Neeraj, Pradeep Sharma, S L Kothari, Sandip Patil, Shaowei Dong, Anupam Jyoti, Sanket Kaushik
{"title":"Rolling down the pilus formation of gram-positive bacteria: underlining the importance of Sortase C as a drug target.","authors":"Himanshi Kain, Ena Gupta, Prashant Sharma, Akanksha Haldiya, Vijay Kumar Srivastava, Ravi Ranjan Kumar Neeraj, Pradeep Sharma, S L Kothari, Sandip Patil, Shaowei Dong, Anupam Jyoti, Sanket Kaushik","doi":"10.1080/08927014.2024.2426167","DOIUrl":"https://doi.org/10.1080/08927014.2024.2426167","url":null,"abstract":"<p><p>Bacteria possess hair-like projections on their surface termed pili. The primary function of a pilus is to enable bacterial cell attachment to the host. Since pili are associated with cell adhesion, they play a major role in bacterial colonization and infection. Due to their important functional role, these surface appendages become ideal drug targets, hence it is essential to study the mechanism associated with pilus assembly, elongation, and attachment. Several enzymes are required for pilus biosynthesis, and their adhesion to the host. In this review paper, we have described the importance of the Sortase C (SrtC) protein which is required for pilus assembly and pilin polymerization. We also provide a detailed structural comparison of the protein from various pathogenic bacteria and highlight the importance of SrtC as a drug target. In addition to this, we have also reported structural studies of SrtC from the pathogenic bacteria <i>Enterococcus faecalis</i> using homology modelling.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-19"},"PeriodicalIF":2.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and structure of epibenthic communities across subtidal artificial hard habitats in the Bay of Cherbourg (English Channel). 瑟堡湾(英吉利海峡)潮下人工硬质生境底栖生物群落的多样性和结构。
IF 2 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-25 DOI: 10.1080/08927014.2024.2419572
Bastien Taormina, Jean-Charles Leclerc, Anne-Marie Rusig, Maxime Navon, Maël Deloor, Pascal Claquin, Jean-Claude Dauvin
{"title":"Diversity and structure of epibenthic communities across subtidal artificial hard habitats in the Bay of Cherbourg (English Channel).","authors":"Bastien Taormina, Jean-Charles Leclerc, Anne-Marie Rusig, Maxime Navon, Maël Deloor, Pascal Claquin, Jean-Claude Dauvin","doi":"10.1080/08927014.2024.2419572","DOIUrl":"10.1080/08927014.2024.2419572","url":null,"abstract":"<p><p>To inform the performance of ecological engineering designs for artificial structures at sea, it is essential to characterise their impacts on the epibenthic communities colonising them. In this context, the present study aims to compare the community structure among natural and four different artificial hard habitats with different ages and features installed in the Bay of Cherbourg (English Channel): <i>i</i>) cinder blocks and <i>ii</i>) boulders, both installed six years prior to the study, and <i>iii</i>) smooth and <i>iv</i>) rugous concrete dykes, both installed one year prior to this study. Results showed that artificial habitats installed six years ago harboured communities with functional and taxonomic diversity characteristic of mature communities but were still different from those of natural habitat. Conversely, the two dyke habitats installed one year prior to this study presented a poorly diversified community dominated by opportunistic taxa. Furthermore, while the concrete used for the two dyke habitats presented different rugosity properties, both habitats supported similar communities, suggesting that such eco-engineering measures did not affect the settlement of early colonisers. Overall, this study highlights the need for long-term monitoring to comprehensively evaluate epibenthic colonisation of artificial structures.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"847-861"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry biofilms on polystyrene surfaces: the role of oxidative treatments for their mitigation. 聚苯乙烯表面的干生物膜:氧化处理对缓解生物膜的作用。
IF 2 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI: 10.1080/08927014.2024.2411389
Emmanuel I Epelle, Ngozi Amaeze, William G Mackay, Mohammed Yaseen
{"title":"Dry biofilms on polystyrene surfaces: the role of oxidative treatments for their mitigation.","authors":"Emmanuel I Epelle, Ngozi Amaeze, William G Mackay, Mohammed Yaseen","doi":"10.1080/08927014.2024.2411389","DOIUrl":"10.1080/08927014.2024.2411389","url":null,"abstract":"<p><p><i>Candida auris</i> and <i>Staphylococcus aureus</i> are associated with a wide range of infections, as they exhibit multidrug resistance - a growing health concern. In this study, gaseous ozone, and ultraviolet-C (UVC) radiation are applied as infection control measures to inactivate dry biofilms of these organisms on polystyrene surfaces. The dosages utilised herein are 1000 and 3000 ppm.min for ozone and 2864 and 11592 mJ.cm<sup>-2</sup> for UVC. Both organisms showed an increased sensitivity to UVC relative to ozone exposure in a bespoke decontamination chamber. While complete inactivation of both organisms (>7.5 CFU log) was realized after 60 mins of UVC application, this could not be achieved with ozonation for the same duration. However, a combined application of ozone and UVC yielded complete inactivation in only 20 mins. For both treatment methods, it was observed that dry biofilms of <i>S. aureus</i> were more difficult to inactivate than dry biofilms of <i>C. auris</i>. Compared to dry biofilms of <i>C. auris</i>, micrographs of wet <i>C. auris</i> biofilms revealed the presence of an abundance of extracellular material after treatments. Interestingly, wet biofilms were more difficult to inactivate than dry biofilms. These insights are crucial to preventing recalcitrant and recurrent infections <i>via</i> contact with contaminated polymeric surfaces.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"772-784"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ozone as a promising method for controlling Pseudomonas spp. biofilm in the food industry: a systematic review. 臭氧是控制食品工业中假单胞菌属生物膜的有效方法:系统综述。
IF 2 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-11-04 DOI: 10.1080/08927014.2024.2420002
Nathália Nogueira Leite, Victoria Garcia Sperandio, Eugénio da Piedade Edmundo Sitoe, Marcus Vinícius de Assis Silva, Ernandes Rodrigues de Alencar, Solimar Gonçalves Machado
{"title":"Ozone as a promising method for controlling <i>Pseudomonas</i> spp. biofilm in the food industry: a systematic review.","authors":"Nathália Nogueira Leite, Victoria Garcia Sperandio, Eugénio da Piedade Edmundo Sitoe, Marcus Vinícius de Assis Silva, Ernandes Rodrigues de Alencar, Solimar Gonçalves Machado","doi":"10.1080/08927014.2024.2420002","DOIUrl":"10.1080/08927014.2024.2420002","url":null,"abstract":"<p><p>This study aimed to evaluate the effectiveness of ozonation in controlling <i>Pseudomonas</i> spp. biofilm in the food industry, and present possible parameters influencing this process. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was conducted in the PubMed, EMBASE, ScienceDirect, and Scopus databases. Eleven articles published between 1993 and 2023 were included in the study, indicating that the topic has been under investigation for several decades, gaining more prominence in recent years. Studies have demonstrated the antimicrobial effect of ozone under different experimental conditions, indicating that it is an effective strategy. Furthermore, they suggest that, in addition to ozone concentration and exposure time, other parameters such as the type of materials used in processing plants, hydrodynamic conditions, water temperature, and knowledge of commonly found microorganisms contribute to the effectiveness of the process aimed at reducing microbial counts. In conclusion, the available evidence suggests that ozonation in controlling <i>Pseudomonas</i> spp. can be considered a promising antimicrobial strategy. More efforts are needed to adapt the different methodologies according to each industrial reality.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"660-678"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long term durability of Tc-bulk and Tc-coatings in various environmental conditions. 锝包体和锝涂层在各种环境条件下的长期耐久性。
IF 2 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-30 DOI: 10.1080/08927014.2024.2413633
Nadezhda M Popova, Mikhail A Volkov, Alexey V Safonov, Oleg E Panfilov, Konstantin E German
{"title":"Long term durability of Tc-bulk and Tc-coatings in various environmental conditions.","authors":"Nadezhda M Popova, Mikhail A Volkov, Alexey V Safonov, Oleg E Panfilov, Konstantin E German","doi":"10.1080/08927014.2024.2413633","DOIUrl":"10.1080/08927014.2024.2413633","url":null,"abstract":"<p><p>Technetium metal is renowned for its inertness in environmental conditions, rendering it an optimal candidate for use as a container material for high-level radioactive waste. Alternatively, thin technetium electroplated coatings can be employed to prevent corrosion of steel containers and the subsequent biofouling that may result. The utilization of metallic technetium in the design of containers for radioactive waste in deep burial may be promising from two perspectives: firstly, in terms of increasing their stability, and secondly, in terms of the utilization of technetium, which is a macrocomponent of radioactive waste. In this study, the resilience of the metal technetium and its two derivative coatings (amorphous and crystalline) was assessed under various conditions, including exposure to fresh groundwater and seawater. The multifunctional strain <i>Shewanella xiamenensis</i> DCB-2-1, known for its ability to enzymatically reduce pertechnetate ions, was used to investigate the possibility of microbial biofouling of metallic technetium. Laboratory experiments have demonstrated that amorphous electrodeposited technetium is more susceptible to oxidation processes compared to its crystalline counterpart. Ultimately, the most durable form of technetium was metal foil. The potential for biofouling on Tc surfaces is largely attributed to the diverse nature of the specimens' surface. Research conducted in the Barents Sea has revealed that the accumulation of iron, calcium, and magnesium mineral phases within the microbial biofilm may shield beta radiation, resulting in the establishment of macro-fouling (<i>Balanus</i> and <i>Mutilus</i>).</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"785-800"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of hydrophobic and hydrophilic surface properties on Pseudomonas aeruginosa adhesion in materials used in mineral water wells. 疏水和亲水表面特性对矿泉水井所用材料中铜绿假单胞菌粘附性的影响。
IF 2 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI: 10.1080/08927014.2024.2410771
Danilo Vilas Boas, Clara M G Lima, Larissa P Margalho, Dionísio P Amorim-Neto, Héctor D S Canales, Wilson J F Lemos Junior, Ana Carolina Ramos, Giancarlo Saraiva, Anderson S Sant'Ana
{"title":"Impact of hydrophobic and hydrophilic surface properties on <i>Pseudomonas aeruginosa</i> adhesion in materials used in mineral water wells.","authors":"Danilo Vilas Boas, Clara M G Lima, Larissa P Margalho, Dionísio P Amorim-Neto, Héctor D S Canales, Wilson J F Lemos Junior, Ana Carolina Ramos, Giancarlo Saraiva, Anderson S Sant'Ana","doi":"10.1080/08927014.2024.2410771","DOIUrl":"10.1080/08927014.2024.2410771","url":null,"abstract":"<p><p>Microbiologically contaminated water is a significant source of infections in humans and animals, with <i>Pseudomonas aeruginosa</i> (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO<sub>4</sub><sup>2-</sup> (sulfate ions), Cl<sup>-</sup> (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO<sub>4</sub><sup>2-</sup>, and Cl<sup>-</sup> concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"735-742"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization. 不同生长条件对唾液衍生微宇宙生物膜的成分和酸度的影响及其对珐琅质脱矿化的影响。
IF 2 3区 生物学
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI: 10.1080/08927014.2024.2410781
Caio Sampaio, Daniela Alejandra Cusicanqui Méndez, Marília Afonso Rabelo Buzalaf, Juliano Pelim Pessan, Thiago Cruvinel
{"title":"Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization.","authors":"Caio Sampaio, Daniela Alejandra Cusicanqui Méndez, Marília Afonso Rabelo Buzalaf, Juliano Pelim Pessan, Thiago Cruvinel","doi":"10.1080/08927014.2024.2410781","DOIUrl":"10.1080/08927014.2024.2410781","url":null,"abstract":"<p><p>This study compared the influence of growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilms and enamel demineralization. Biofilms grown in sucrose-supplemented modified McBain medium, containing 25/50 mmol/L PIPES (buffer), under anaerobiosis/microaerophilia, for 3 and 7 days were evaluated for their acidogenicity, microbial composition, matrix, and enamel mineral content. The viability of total lactobacilli was higher in the group containing 25 mmol/L PIPES grown under anaerobiosis, which also showed lower pH values. The viability of total streptococci and total microorganisms was significantly higher at 7 days in the groups with 50 mmol/L PIPES than at 3 days, regardless of the incubation atmosphere. No significant differences were observed in lactic acid, calcium, superficial hardness loss, or lesion depth. In conclusion, the incubation atmosphere, buffer content in the growth media, and duration of biofilm formation displayed species-varied influence on microcosm biofilms, without causing significant changes in acid metabolism or enamel demineralization.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"743-753"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信