锈层的微生物群落受到海水微生物群落的影响。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shengxun Yao, Junxiang Lai, Congtao Sun, Maomi Zhao, Jizhou Duan, Xiufen Liao, Zihan Pan
{"title":"锈层的微生物群落受到海水微生物群落的影响。","authors":"Shengxun Yao, Junxiang Lai, Congtao Sun, Maomi Zhao, Jizhou Duan, Xiufen Liao, Zihan Pan","doi":"10.1080/08927014.2024.2411076","DOIUrl":null,"url":null,"abstract":"<p><p>To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of <i>Erythrobacter</i>, <i>norank_f__Rhodothermaceae</i>, and <i>Acinetobacter</i> bacteria, as well as <i>Aspergillus</i> fungi, were overrepresented in the rust layer, along with the <i>Pseudoalteromonas</i> and <i>Marinobacterium</i> bacteria in seawater, and <i>Ramlibacter</i>, <i>Aquimarina</i>, and <i>Williamsia</i> bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The microbial communities of the rust layer were influenced by seawater microbial communities.\",\"authors\":\"Shengxun Yao, Junxiang Lai, Congtao Sun, Maomi Zhao, Jizhou Duan, Xiufen Liao, Zihan Pan\",\"doi\":\"10.1080/08927014.2024.2411076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of <i>Erythrobacter</i>, <i>norank_f__Rhodothermaceae</i>, and <i>Acinetobacter</i> bacteria, as well as <i>Aspergillus</i> fungi, were overrepresented in the rust layer, along with the <i>Pseudoalteromonas</i> and <i>Marinobacterium</i> bacteria in seawater, and <i>Ramlibacter</i>, <i>Aquimarina</i>, and <i>Williamsia</i> bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2411076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2411076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了揭示微生物影响腐蚀(MIC)的责任微生物,我们利用 16S rRNA 和 ITS 测序技术,研究了锈层和海水中的细菌和真菌群落。结果表明,锈层中与腐蚀相关的红杆菌属、诺兰克_f__霍多菌属和醋氨曲霉属细菌以及曲霉菌在海水中的比例较高,海水中的假交替单胞菌和马林杆菌在锈层中的比例也较高,而拉姆利杆菌属、水华菌属和威廉姆斯菌属则在锈层中首次被检测到。源追踪分析显示,约 23.08% 的细菌和 21.48% 的真菌来自海水。随机过程控制着锈层和海水微生物群落,网络分析显示了细菌和真菌群落之间的共存和相互作用。这些结果表明,锈层微生物群落的组成受海洋环境微生物群落的影响,可为海洋相关项目中 MIC 的控制提供基础数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The microbial communities of the rust layer were influenced by seawater microbial communities.

To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of Erythrobacter, norank_f__Rhodothermaceae, and Acinetobacter bacteria, as well as Aspergillus fungi, were overrepresented in the rust layer, along with the Pseudoalteromonas and Marinobacterium bacteria in seawater, and Ramlibacter, Aquimarina, and Williamsia bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信