{"title":"结垢面板的水动力摩擦性能:不同涂层类型的比较研究。","authors":"Irma Yeginbayeva, Aleksei Berdiuzhenko","doi":"10.1080/08927014.2024.2404960","DOIUrl":null,"url":null,"abstract":"<p><p>This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic frictional performance of fouled panels: a comparative study of different coating types.\",\"authors\":\"Irma Yeginbayeva, Aleksei Berdiuzhenko\",\"doi\":\"10.1080/08927014.2024.2404960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2404960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2404960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hydrodynamic frictional performance of fouled panels: a comparative study of different coating types.
This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.