A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-18 DOI:10.1080/08927014.2024.2414922
Udhayakumar Murugan, Dakshesh Gusain, Baskar Balasubramani, Sagar Srivastava, Sai Ganesh, Srikrishnan Ambattu Raghavannambiar, Kannan Ramaraj
{"title":"A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces.","authors":"Udhayakumar Murugan, Dakshesh Gusain, Baskar Balasubramani, Sagar Srivastava, Sai Ganesh, Srikrishnan Ambattu Raghavannambiar, Kannan Ramaraj","doi":"10.1080/08927014.2024.2414922","DOIUrl":null,"url":null,"abstract":"<p><p>Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"679-701"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2414922","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.

环境友好型生物仿生超疏水表面综述。
海洋污损是一个全球性问题,对海洋生态系统和海洋工业部门造成危害。传统的防污方法使用的有害物质会破坏环境。因此,最近的研究重点是开发环保、持久和可持续的防污解决方案。科学家们从大自然中寻找灵感,特别是植物、昆虫和动物(如荷叶、蝴蝶和鲨鱼)的微结构中发现的憎水特性。本综述总结了当前开发超疏水材料和制造技术用于仿生防污策略的趋势。这些策略模仿了各种生物物种的表面微结构,包括荷叶、珊瑚触手以及鲨鱼、鲸鱼和海豚的皮肤。综述还讨论了这些仿生材料的技术应用以及在海洋领域实施这些材料所面临的挑战。总之,我们的目标是利用天然表面的超疏水性来创造有效的防污解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信