Biological ChemistryPub Date : 2024-10-01Print Date: 2024-10-28DOI: 10.1515/hsz-2024-0045
Marc Behrendt
{"title":"Implications of TRPM3 and TRPM8 for sensory neuron sensitisation.","authors":"Marc Behrendt","doi":"10.1515/hsz-2024-0045","DOIUrl":"10.1515/hsz-2024-0045","url":null,"abstract":"<p><p>Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"405 9-10","pages":"583-599"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabian Peter Josef Schultes, Leon Welter, Myra Schmidtke, Dirk Tischler, Carolin Mügge
{"title":"A tailored cytochrome P450 monooxygenase from <i>Gordonia rubripertincta</i> CWB2 for selective aliphatic monooxygenation.","authors":"Fabian Peter Josef Schultes, Leon Welter, Myra Schmidtke, Dirk Tischler, Carolin Mügge","doi":"10.1515/hsz-2024-0041","DOIUrl":"https://doi.org/10.1515/hsz-2024-0041","url":null,"abstract":"<p><p>Cytochrome P450 monooxygenases are recognized as versatile biocatalysts due to their broad reaction capabilities. One important reaction is the hydroxylation of non-activated C-H bonds. The subfamily CYP153A is known for terminal hydroxylation reactions, giving access to functionalized aliphatics. Whilst fatty derivatives may be converted by numerous enzyme classes, midchain aliphatics are seldomly accepted, a prime property of CYP153As. We report here on a new CYP153A member from the genome of the mesophilic actinobacterium <i>Gordonia rubripertincta</i> CWB2 as an efficient biocatalyst. The gene was overexpressed in <i>Escherichia coli</i> and fused with a surrogate electron transport system from <i>Acinetobacter</i> sp. OC4. This chimeric self-sufficient whole-cell system could perform hydroxylation and epoxidation reactions: conversions of C6-C14 alkanes, alkenes, alcohols and of cyclic compounds were observed, yielding production rates of, <i>e</i>.<i>g</i>., 2.69 mM h<sup>-1</sup> for 1-hexanol and 4.97 mM h<sup>-1</sup> for 1,2-epoxyhexane. Optimizing the linker compositions between the protein units led to significantly altered activity. Balancing linker length and flexibility with glycine-rich and helix-forming linker units increased 1-hexanol production activity to 350 % compared to the initial linker setup with entirely helical linkers. The study shows that strategic coupling of efficient electron supply and a selective enzyme enables previously challenging monooxygenation reactions of midchain aliphatics.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2024-09-23Print Date: 2024-12-17DOI: 10.1515/hsz-2023-0205
Arend Vogt, Raik Paulat, Daniel Parthier, Verena Just, Michal Szczepek, Patrick Scheerer, Qianzhao Xu, Andreas Möglich, Dietmar Schmitz, Benjamin R Rost, Nikolaus Wenger
{"title":"Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology.","authors":"Arend Vogt, Raik Paulat, Daniel Parthier, Verena Just, Michal Szczepek, Patrick Scheerer, Qianzhao Xu, Andreas Möglich, Dietmar Schmitz, Benjamin R Rost, Nikolaus Wenger","doi":"10.1515/hsz-2023-0205","DOIUrl":"10.1515/hsz-2023-0205","url":null,"abstract":"<p><p>The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"751-763"},"PeriodicalIF":2.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein persulfidation in plants: mechanisms and functions beyond a simple stress response.","authors":"Anna Moseler, Stephan Wagner, Andreas J Meyer","doi":"10.1515/hsz-2024-0038","DOIUrl":"https://doi.org/10.1515/hsz-2024-0038","url":null,"abstract":"<p><p>Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H<sub>2</sub>S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H<sub>2</sub>S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H<sub>2</sub>S and protein persulfide generation and mechanisms for H<sub>2</sub>S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase","authors":"Tetiana Petrachkova, Olha Soldatkina, Lam Leduy, Alain Nepveu","doi":"10.1515/hsz-2024-0088","DOIUrl":"https://doi.org/10.1515/hsz-2024-0088","url":null,"abstract":"The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"53 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Bejarano Franco, Safia Boujataoui, Majd Hadji, Louis Hammer, Helle D Ulrich, L Maximilian Reuter
{"title":"Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry.","authors":"Marina Bejarano Franco, Safia Boujataoui, Majd Hadji, Louis Hammer, Helle D Ulrich, L Maximilian Reuter","doi":"10.1515/hsz-2024-0058","DOIUrl":"https://doi.org/10.1515/hsz-2024-0058","url":null,"abstract":"<p><p>Flow cytometry is a versatile tool used for cell sorting, DNA content imaging, and determining various cellular characteristics. With the possibility of high-throughput analyses, it combines convenient labelling techniques to serve rapid, quantitative, and qualitative workflows. The ease of sample preparation and the broad range of applications render flow cytometry a preferred approach for many scientific questions. Yet, we lack practical adaptations to fully harness the quantitative and high-throughput capabilities of most cytometers for many organisms. Here, we present simple and advanced protocols for the analysis of total DNA content, <i>de novo</i> DNA synthesis, and protein association to chromatin in budding yeast and human cells. Upon optimization of experimental conditions and choice of fluorescent dyes, up to four parameters can be measured simultaneously and quantitatively for each cell of a population in a multi-well plate format. Reducing sample numbers, plastic waste, costs per well, and hands-on time without compromising signal quality or single-cell accuracy are the main advantages of the presented protocols. In proof-of-principle experiments, we show that DNA content increase in S-phase correlates with <i>de novo</i> DNA synthesis and can be predicted by the presence of the replicative helicase MCM2-7 on genomic DNA.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The TOM complex from an evolutionary perspective and the functions of TOMM70.","authors":"Metin Özdemir, Sven Dennerlein","doi":"10.1515/hsz-2024-0043","DOIUrl":"https://doi.org/10.1515/hsz-2024-0043","url":null,"abstract":"<p><p>In humans, up to 1,500 mitochondrial precursor proteins are synthesized at cytosolic ribosomes and must be imported into the organelle. This is not only essential for mitochondrial but also for many cytosolic functions. The majority of mitochondrial precursor proteins are imported over the translocase of the outer membrane (TOM). In recent years, high-resolution structure analyses from different organisms shed light on the composition and arrangement of the TOM complex. Although significant similarities have been found, differences were also observed, which have been favored during evolution and could reflect the manifold functions of TOM with cellular signaling and its response to altered metabolic situations. A key component within these regulatory mechanisms is TOMM70, which is involved in protein import, forms contacts to the ER and the nucleus, but is also involved in cellular defense mechanisms during infections.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pathological and physiological roles of ADP-ribosylation: established functions and new insights","authors":"Karla L.H. Feijs-Žaja, Nonso J. Ikenga, Roko Žaja","doi":"10.1515/hsz-2024-0057","DOIUrl":"https://doi.org/10.1515/hsz-2024-0057","url":null,"abstract":"The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD<jats:sup>+</jats:sup> to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"196 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights in caveolae protein structure arrangements and their local lipid environment.","authors":"Esther Ocket, Claudia Matthaeus","doi":"10.1515/hsz-2024-0046","DOIUrl":"https://doi.org/10.1515/hsz-2024-0046","url":null,"abstract":"<p><p>Caveolae are 50-80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2024-05-29Print Date: 2024-12-17DOI: 10.1515/hsz-2023-0358
Brennan McDonald, Mirko H H Schmidt
{"title":"Structure, function, and recombinant production of EGFL7.","authors":"Brennan McDonald, Mirko H H Schmidt","doi":"10.1515/hsz-2023-0358","DOIUrl":"10.1515/hsz-2023-0358","url":null,"abstract":"<p><p>The secreted factor Epidermal growth factor-like protein 7 (EGFL7) is involved in angiogenesis, vasculogenesis, as well as neurogenesis. Importantly, EGFL7 is also implicated in various pathological conditions, including tumor angiogenesis in human cancers. Thus, understanding the mechanisms through which EGFL7 regulates and promotes blood vessel formation is of clear practical importance. One principle means by which EGFL7's function is investigated is via the expression and purification of the recombinant protein. This mini-review describes three methods used to produce recombinant EGFL7 protein. First, a brief overview of EGFL7's genetics, structure, and function is provided. This is followed by an examination of the advantages and disadvantages of three common expression systems used in the production of recombinant EGFL7; (i) <i>Escherichia coli (E</i>. <i>coli)</i>, (ii) human embryonic kidney (HEK) 293 cells or other mammalian cells, and (iii) a baculovirus-based Sf9 insect cell expression system. Based on the available evidence, we conclude that the baculovirus-based Sf9 insect cell expression currently has the advantages of producing active recombinant EGFL7 in the native conformation with the presence of acceptable posttranslational modifications, while providing sufficient yield and stability for experimental purposes.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"691-700"},"PeriodicalIF":2.9,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}