A tailored cytochrome P450 monooxygenase from Gordonia rubripertincta CWB2 for selective aliphatic monooxygenation.

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fabian Peter Josef Schultes, Leon Welter, Myra Schmidtke, Dirk Tischler, Carolin Mügge
{"title":"A tailored cytochrome P450 monooxygenase from <i>Gordonia rubripertincta</i> CWB2 for selective aliphatic monooxygenation.","authors":"Fabian Peter Josef Schultes, Leon Welter, Myra Schmidtke, Dirk Tischler, Carolin Mügge","doi":"10.1515/hsz-2024-0041","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome P450 monooxygenases are recognized as versatile biocatalysts due to their broad reaction capabilities. One important reaction is the hydroxylation of non-activated C-H bonds. The subfamily CYP153A is known for terminal hydroxylation reactions, giving access to functionalized aliphatics. Whilst fatty derivatives may be converted by numerous enzyme classes, midchain aliphatics are seldomly accepted, a prime property of CYP153As. We report here on a new CYP153A member from the genome of the mesophilic actinobacterium <i>Gordonia rubripertincta</i> CWB2 as an efficient biocatalyst. The gene was overexpressed in <i>Escherichia coli</i> and fused with a surrogate electron transport system from <i>Acinetobacter</i> sp. OC4. This chimeric self-sufficient whole-cell system could perform hydroxylation and epoxidation reactions: conversions of C6-C14 alkanes, alkenes, alcohols and of cyclic compounds were observed, yielding production rates of, <i>e</i>.<i>g</i>., 2.69 mM h<sup>-1</sup> for 1-hexanol and 4.97 mM h<sup>-1</sup> for 1,2-epoxyhexane. Optimizing the linker compositions between the protein units led to significantly altered activity. Balancing linker length and flexibility with glycine-rich and helix-forming linker units increased 1-hexanol production activity to 350 % compared to the initial linker setup with entirely helical linkers. The study shows that strategic coupling of efficient electron supply and a selective enzyme enables previously challenging monooxygenation reactions of midchain aliphatics.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2024-0041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytochrome P450 monooxygenases are recognized as versatile biocatalysts due to their broad reaction capabilities. One important reaction is the hydroxylation of non-activated C-H bonds. The subfamily CYP153A is known for terminal hydroxylation reactions, giving access to functionalized aliphatics. Whilst fatty derivatives may be converted by numerous enzyme classes, midchain aliphatics are seldomly accepted, a prime property of CYP153As. We report here on a new CYP153A member from the genome of the mesophilic actinobacterium Gordonia rubripertincta CWB2 as an efficient biocatalyst. The gene was overexpressed in Escherichia coli and fused with a surrogate electron transport system from Acinetobacter sp. OC4. This chimeric self-sufficient whole-cell system could perform hydroxylation and epoxidation reactions: conversions of C6-C14 alkanes, alkenes, alcohols and of cyclic compounds were observed, yielding production rates of, e.g., 2.69 mM h-1 for 1-hexanol and 4.97 mM h-1 for 1,2-epoxyhexane. Optimizing the linker compositions between the protein units led to significantly altered activity. Balancing linker length and flexibility with glycine-rich and helix-forming linker units increased 1-hexanol production activity to 350 % compared to the initial linker setup with entirely helical linkers. The study shows that strategic coupling of efficient electron supply and a selective enzyme enables previously challenging monooxygenation reactions of midchain aliphatics.

一种来自 Gordonia rubripertincta CWB2 的定制细胞色素 P450 单加氧酶,用于选择性脂肪族单加氧作用。
细胞色素 P450 单加氧酶具有广泛的反应能力,是公认的多功能生物催化剂。其中一个重要反应是非活化 C-H 键的羟化反应。CYP153A 亚家族以末端羟基化反应而闻名,可用于官能化脂肪族。虽然脂肪衍生物可被多种酶类转化,但中链脂肪族化合物却很少被接受,这是 CYP153A 的主要特性。我们在此报告了嗜中放线菌 Gordonia rubripertincta CWB2 基因组中的一种新的 CYP153A 成员,它是一种高效的生物催化剂。该基因在大肠杆菌中过度表达,并与来自醋杆菌 OC4 的代理电子传递系统融合。这种自给自足的嵌合全细胞系统可进行羟化和环氧化反应:可观察到 C6-C14 烷烃、烯烃、醇和环状化合物的转化,例如,1-己醇的转化率为 2.69 mM h-1,1,2-环氧己烷的转化率为 4.97 mM h-1。优化蛋白质单元之间的连接体组成可显著改变活性。与最初完全使用螺旋连接体的连接体设置相比,利用富含甘氨酸和螺旋形成的连接体单元平衡连接体的长度和灵活性,可将 1-己醇的生产活性提高 350%。这项研究表明,将高效电子供应和选择性酶进行策略性耦合,可以实现以往具有挑战性的中链脂肪族单氧合反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信