Biomicrofluidics最新文献

筛选
英文 中文
Soluto-thermal Marangoni convection in stationary micro-bioreactors on heated substrates: Tool for in vitro diagnosis of PSA 加热基底上固定微型生物反应器中的溶解-热马兰戈尼对流:PSA 体外诊断工具
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-08 DOI: 10.1063/5.0188093
Vidisha Singh Rathaur, Siddhartha Panda
{"title":"Soluto-thermal Marangoni convection in stationary micro-bioreactors on heated substrates: Tool for in vitro diagnosis of PSA","authors":"Vidisha Singh Rathaur, Siddhartha Panda","doi":"10.1063/5.0188093","DOIUrl":"https://doi.org/10.1063/5.0188093","url":null,"abstract":"The investigation of antigen-laden droplet deposition patterns on antibody-immobilized substrates has potential for disease detection. Stationary droplets that contain antigens on surfaces immobilized with antibodies can function as microreactors. Temperature modulation enhances reaction efficiency and reduces detection time in droplet-based systems. Thus, the aim of this study is to explore the impact of substrate heating on the structures of protein deposits and the influence of substrate temperature on thermo-solutal Marangoni convection within the droplets. Previous research has explored deposition patterns as diagnostic tools, but limited investigations have focused on the effects of substrate heating on protein deposit structures and the influence of substrate temperature on thermo-solutal Marangoni convection within droplets, creating a knowledge gap. In this study, we conducted experiments to explore how heating the substrate affects the deposition patterns of droplets containing prostate-specific antigen (PSA) on a substrate immobilized with anti-PSA IgG. Additionally, we investigated the thermo-solutal Marangoni convection within these droplets. Our findings reveal distinct deposition patterns classified into dendritic structures (heterogeneous), transitional patterns, and needle-like (homogeneous) structures. The presence of prominent coffee rings and the variation in crystal size across different groups highlight the interplay between thermal and solutal Marangoni advection. Entropy analysis provides insights into structural differences within and between patterns. This work optimizes substrate temperatures for reduced evaporation and detection times while preserving protein integrity, advancing diagnostic tool development, and improving understanding of droplet-based systems.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spheroids formation in large drops suspended in superhydrophobic paper cones 悬浮在超疏水纸锥中的大水滴形成球状物
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-05 DOI: 10.1063/5.0197807
Omkar Mohapatra, Maheshwar Gopu, Rahail Ashraf, Jijo Easo George, Saniya Patil, Raju Mukherjee, Sanjay Kumar, Dileep Mampallil
{"title":"Spheroids formation in large drops suspended in superhydrophobic paper cones","authors":"Omkar Mohapatra, Maheshwar Gopu, Rahail Ashraf, Jijo Easo George, Saniya Patil, Raju Mukherjee, Sanjay Kumar, Dileep Mampallil","doi":"10.1063/5.0197807","DOIUrl":"https://doi.org/10.1063/5.0197807","url":null,"abstract":"The utilization of 3D cell culture for spheroid formation holds significant implications in cancer research, contributing to a fundamental understanding of the disease and aiding drug development. Conventional methods such as the hanging drop technique and other alternatives encounter limitations due to smaller drop volumes, leading to nutrient starvation and restricted culture duration. In this study, we present a straightforward approach to creating superhydrophobic paper cones capable of accommodating large volumes of culture media drops. These paper cones have sterility, autoclavability, and bacterial repellent properties. Leveraging these attributes, we successfully generate large spheroids of ovarian cancer cells and, as a proof of concept, conduct drug screening to assess the impact of carboplatin. Thus, our method enables the preparation of flexible superhydrophobic surfaces for laboratory applications in an expeditious manner, exemplified here through spheroid formation and drug screening demonstrations.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial and mesenchymal phenotypes determine the dynamics of circulating breast tumor cells in microfluidic capillaries under chemotherapy-induced stress 上皮细胞和间质细胞表型决定了化疗诱导压力下微流体毛细血管中循环乳腺肿瘤细胞的动态变化
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-05 DOI: 10.1063/5.0188861
Rong Du, Xiaoning Han, Linhong Deng, Xiang Wang
{"title":"Epithelial and mesenchymal phenotypes determine the dynamics of circulating breast tumor cells in microfluidic capillaries under chemotherapy-induced stress","authors":"Rong Du, Xiaoning Han, Linhong Deng, Xiang Wang","doi":"10.1063/5.0188861","DOIUrl":"https://doi.org/10.1063/5.0188861","url":null,"abstract":"Circulating tumor cells (CTCs) with different epithelial and mesenchymal phenotypes play distinct roles in the metastatic cascade. However, the influence of their phenotypic traits and chemotherapy on their transit and retention within capillaries remains unclear. To explore this, we developed a microfluidic device comprising 216 microchannels of different widths from 5 to 16 μm to mimic capillaries. This platform allowed us to study the behaviors of human breast cancer epithelial MCF-7 and mesenchymal MDA-MB-231 cells through microchannels under chemotherapy-induced stress. Our results revealed that when the cell diameter to microchannel width ratio exceeded 1.2, MCF-7 cells exhibited higher transit percentages than MDA-MB-231 cells under a flow rate of 0.13 mm/s. Tamoxifen (250 nM) reduced the transit percentage of MCF-7 cells, whereas 100 nM paclitaxel decreased transit percentages for both cell types. These differential responses were partially due to altered cell stiffness following drug treatments. When cells were entrapped at microchannel entrances, tamoxifen, paclitaxel, and high-flow stress (0.5 mm/s) induced a reduction in mitochondrial membrane potential (MMP) in MCF-7 cells. Tamoxifen treatment also elevated reactive oxygen species (ROS) levels in MCF-7 cells. Conversely, MMP and ROS levels in entrapped MDA-MB-231 cells remained unaffected. Consequently, the viability and proliferation of entrapped MCF-7 cells declined under these chemical and physical stress conditions. Our findings emphasize that phenotypically distinct CTCs may undergo selective filtration and exhibit varied responses to chemotherapy in capillaries, thereby impacting cancer metastasis outcomes. This highlights the importance of considering both cell phenotype and drug response to improve treatment strategies.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of upstream particle concentration from flow using AC electro-osmosis and dielectrophoresis 利用交流电渗透和介电泳优化流动上游颗粒浓度
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-04 DOI: 10.1063/5.0189137
Africa Smith de Diego, Oreoluwa V. Griffiths, Matthew P. Johnson, Marco de Montis, Michael Pycraft Hughes
{"title":"Optimization of upstream particle concentration from flow using AC electro-osmosis and dielectrophoresis","authors":"Africa Smith de Diego, Oreoluwa V. Griffiths, Matthew P. Johnson, Marco de Montis, Michael Pycraft Hughes","doi":"10.1063/5.0189137","DOIUrl":"https://doi.org/10.1063/5.0189137","url":null,"abstract":"There are many applications where upstream sample processing is required to concentrate dispersed particles in flow; this may be to increase the concentration (e.g., to enhance biosensor accuracy) or to decrease it (e.g., by removing contaminants from flow). The AC electrokinetic phenomenon, dielectrophoresis (DEP), has been used widely for particle trapping for flow, but the magnitude of the force drops reduces rapidly with distance from electrode edges, so that nm-scale particles such as viruses and bacteria are only trapped when near the electrode surface. This limits the usable flow rate in the device and can render the final device unusable for practical applications. Conversely, another electrokinetic phenomenon, AC electro-osmosis (ACEO), can be used to move particles to electrode surfaces but is unable to trap them from flow, limiting their ability for sample cleanup or trap-and-purge concentration. In this paper, we describe the optimization of ACEO electrodes aligned parallel to pressure-driven flow as a precursor/preconditioner to capture particles from a flow stream and concentrate them adjacent to the channel wall to enhance DEP capture. This is shown to be effective at flow rates of up to 0.84 ml min−1. Furthermore, the analysis of the 3D flow structure in the ACEO device by both simulation and confocal microscopy suggests that while the system offers significant benefits, the flow structure in the volume near the channel lid is such that while substantial trapping can occur, particles in this part of the chamber cannot be trapped, independent of the chamber height.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape-memory microfluidic chips for fluid and droplet manipulation 用于操纵流体和液滴的形状记忆微流控芯片
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-01 DOI: 10.1063/5.0188227
Wen-Qi Ye, Wei Zhang, Zhang-Run Xu
{"title":"Shape-memory microfluidic chips for fluid and droplet manipulation","authors":"Wen-Qi Ye, Wei Zhang, Zhang-Run Xu","doi":"10.1063/5.0188227","DOIUrl":"https://doi.org/10.1063/5.0188227","url":null,"abstract":"Fluid manipulation is an important foundation of microfluidic technology. Various methods and devices have been developed for fluid control, such as electrowetting-on-dielectric-based digital microfluidic platforms, microfluidic pumps, and pneumatic valves. These devices enable precise manipulation of small volumes of fluids. However, their complexity and high cost limit the commercialization and widespread adoption of microfluidic technology. Shape memory polymers as smart materials can adjust their shape in response to external stimuli. By integrating shape memory polymers into microfluidic chips, new possibilities for expanding the application areas of microfluidic technology emerge. These shape memory polymers can serve as actuators or regulators to drive or control fluid flow in microfluidic systems, offering innovative approaches for fluid manipulation. Due to their unique properties, shape memory polymers provide a new solution for the construction of intelligent and automated microfluidic systems. Shape memory microfluidic chips are expected to be one of the future directions in the development of microfluidic technology. This article offers a summary of recent research achievements in the field of shape memory microfluidic chips for fluid and droplet manipulation and provides insights into the future development direction of shape memory microfluidic devices.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confinement effect on the microcapillary flow and shape of red blood cells 红细胞微毛细血管流动和形状的封闭效应
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-01 DOI: 10.1063/5.0197208
Mohammed Nouaman, Alexis Darras, Christian Wagner, Steffen M. Recktenwald
{"title":"Confinement effect on the microcapillary flow and shape of red blood cells","authors":"Mohammed Nouaman, Alexis Darras, Christian Wagner, Steffen M. Recktenwald","doi":"10.1063/5.0197208","DOIUrl":"https://doi.org/10.1063/5.0197208","url":null,"abstract":"The ability to change shape is essential for the proper functioning of red blood cells (RBCs) within the microvasculature. The shape of RBCs significantly influences blood flow and has been employed in microfluidic lab-on-a-chip devices, serving as a diagnostic biomarker for specific pathologies and enabling the assessment of RBC deformability. While external flow conditions, such as the vessel size and the flow velocity, are known to impact microscale RBC flow, our comprehensive understanding of how their shape-adapting ability is influenced by channel confinement in biomedical applications remains incomplete. This study explores the impact of various rectangular and square channels, each with different confinement and aspect ratios, on the in vitro RBC flow behavior and characteristic shapes. We demonstrate that rectangular microchannels, with a height similar to the RBC diameter in combination with a confinement ratio exceeding 0.9, are required to generate distinctive well-defined croissant and slipper-like RBC shapes. These shapes are characterized by their equilibrium positions in the channel cross section, and we observe a strong elongation of both stable shapes in response to the shear rate across the different channels. Less confined channel configurations lead to the emergence of unstable other shape types that display rich shape dynamics. Our work establishes an experimental framework to understand the influence of channel size on the single-cell flow behavior of RBCs, providing valuable insights for the design of biomicrofluidic single-cell analysis applications.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vortex sorting of rare particles/cells in microcavities: A review 微腔中稀有粒子/细胞的涡流分拣:综述
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-01 DOI: 10.1063/5.0174938
Feng Shen, Jie Gao, Jie Zhang, Mingzhu Ai, Hongkai Gao, Zhaomiao Liu
{"title":"Vortex sorting of rare particles/cells in microcavities: A review","authors":"Feng Shen, Jie Gao, Jie Zhang, Mingzhu Ai, Hongkai Gao, Zhaomiao Liu","doi":"10.1063/5.0174938","DOIUrl":"https://doi.org/10.1063/5.0174938","url":null,"abstract":"Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost and convenient fabrication of polymer micro/nanopores with the needle punching process and their applications in nanofluidic sensing 利用针刺工艺低成本、便捷地制造聚合物微孔/纳米孔,并将其应用于纳米流体传感领域
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-04-01 DOI: 10.1063/5.0203512
Rui Liu, Zhe Liu, Jianfeng Li, Yinghua Qiu
{"title":"Low-cost and convenient fabrication of polymer micro/nanopores with the needle punching process and their applications in nanofluidic sensing","authors":"Rui Liu, Zhe Liu, Jianfeng Li, Yinghua Qiu","doi":"10.1063/5.0203512","DOIUrl":"https://doi.org/10.1063/5.0203512","url":null,"abstract":"Solid-state micro/nanopores play an important role in the sensing field because of their high stability and controllable size. Aiming at problems of complex processes and high costs in pore manufacturing, we propose a convenient and low-cost micro/nanopore fabrication technique based on the needle punching method. The thin film is pierced by controlling the feed of a microscale tungsten needle, and the size variations of the micropore are monitored by the current feedback system. Based on the positive correlation between the micropore size and the current threshold, the size-controllable preparation of micropores is achieved. The preparation of nanopores is realized by the combination of needle punching and chemical etching. First, a conical defect is prepared on the film with the tungsten needle. Then, nanopores are obtained by unilateral chemical etching of the film. Using the prepared conical micropores, resistive-pulse detection of nanoparticles is performed. Significant ionic current rectification is also obtained with our conical nanopores. It is proved that the properties of micro/nanopores prepared by our method are comparable to those prepared by the track-etching method. The simple and controllable fabrication process proposed here will advance the development of low-cost micro/nanopore sensors.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A universal inverse design methodology for microfluidic mixers 微流控混合器的通用逆向设计方法
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-03-25 DOI: 10.1063/5.0185494
Naiyin Zhang, Taotao Sun, Zhenya Liu, Yidan Zhang, Ying Xu, Junchao Wang
{"title":"A universal inverse design methodology for microfluidic mixers","authors":"Naiyin Zhang, Taotao Sun, Zhenya Liu, Yidan Zhang, Ying Xu, Junchao Wang","doi":"10.1063/5.0185494","DOIUrl":"https://doi.org/10.1063/5.0185494","url":null,"abstract":"The intelligent design of microfluidic mixers encompasses both the automation of predicting fluid performance and the structural design of mixers. This article delves into the technical trajectory of computer-aided design for micromixers, leveraging artificial intelligence algorithms. We propose an automated micromixer design methodology rooted in cost-effective artificial neural network (ANN) models paired with inverse design algorithms. Initially, we introduce two inverse design methods for micromixers: one that combines ANN with multi-objective genetic algorithms, and another that fuses ANN with particle swarm optimization algorithms. Subsequently, using two benchmark micromixers as case studies, we demonstrate the automatic derivation of micromixer structural parameters. Finally, we automatically design and optimize 50 sets of micromixer structures using the proposed algorithms. The design accuracy is further enhanced by analyzing the inverse design algorithm from a statistical standpoint.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vasculature-on-a-chip technologies as platforms for advanced studies of bacterial infections 作为细菌感染高级研究平台的芯片上血管技术
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-03-25 DOI: 10.1063/5.0179281
Lily Isabelle Gaudreau, Elizabeth J. Stewart
{"title":"Vasculature-on-a-chip technologies as platforms for advanced studies of bacterial infections","authors":"Lily Isabelle Gaudreau, Elizabeth J. Stewart","doi":"10.1063/5.0179281","DOIUrl":"https://doi.org/10.1063/5.0179281","url":null,"abstract":"Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host–bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信