Thi Ngoc Diep Trinh, Nguyen Khoi Song Tran, Hanh An Nguyen, Nguyen Minh Chon, Kieu The Loan Trinh, Nae Yoon Lee
{"title":"Recent advances in portable devices for environmental monitoring applications.","authors":"Thi Ngoc Diep Trinh, Nguyen Khoi Song Tran, Hanh An Nguyen, Nguyen Minh Chon, Kieu The Loan Trinh, Nae Yoon Lee","doi":"10.1063/5.0224217","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental pollution remains a major societal problem, leading to serious impacts on living organisms including humans. Human activities such as civilization, urbanization, and industrialization are major causes of pollution. Imposing stricter rules helps control environmental pollutant levels, creating a need for reliable pollutant monitoring in air, water, and soil. The application of traditional analytical techniques is limited in low-resource areas because they are sophisticated, expensive, and bulky. With the development of biosensors and microfluidics technology, environmental monitoring has significantly improved the analysis time, low cost, portability, and ease of use. This review discusses the fundamentals of portable devices, including microfluidics and biosensors, for environmental control. Recently, publications reviewing microfluidics and biosensor device applications have increased more than tenfold, showing the potential of emerging novel approaches for environmental monitoring. Strategies for enzyme-, immunoassay-, and molecular-based analyte sensing are discussed based on their mechanisms and applications. Microfluidic and biosensor platforms for detecting major pollutants, including metal ions, pathogens, pesticides, and antibiotic residues, are reviewed based on their working principles, advantages, and disadvantages. Challenges and future trends for the device design and fabrication process to improve performance are discussed. Miniaturization, low cost, selectivity, sensitivity, high automation, and savings in samples and reagents make the devices ideal alternatives for in-field detection, especially in low-resource areas. However, their operation with complicated environmental samples requires further research to improve the specificity and sensitivity. Although there is a wide range of devices available for environmental applications, their implementation in real-world situations is limited. This study provides insights into existing issues that can be used as references and a comparative analysis for future studies and applications.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0224217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental pollution remains a major societal problem, leading to serious impacts on living organisms including humans. Human activities such as civilization, urbanization, and industrialization are major causes of pollution. Imposing stricter rules helps control environmental pollutant levels, creating a need for reliable pollutant monitoring in air, water, and soil. The application of traditional analytical techniques is limited in low-resource areas because they are sophisticated, expensive, and bulky. With the development of biosensors and microfluidics technology, environmental monitoring has significantly improved the analysis time, low cost, portability, and ease of use. This review discusses the fundamentals of portable devices, including microfluidics and biosensors, for environmental control. Recently, publications reviewing microfluidics and biosensor device applications have increased more than tenfold, showing the potential of emerging novel approaches for environmental monitoring. Strategies for enzyme-, immunoassay-, and molecular-based analyte sensing are discussed based on their mechanisms and applications. Microfluidic and biosensor platforms for detecting major pollutants, including metal ions, pathogens, pesticides, and antibiotic residues, are reviewed based on their working principles, advantages, and disadvantages. Challenges and future trends for the device design and fabrication process to improve performance are discussed. Miniaturization, low cost, selectivity, sensitivity, high automation, and savings in samples and reagents make the devices ideal alternatives for in-field detection, especially in low-resource areas. However, their operation with complicated environmental samples requires further research to improve the specificity and sensitivity. Although there is a wide range of devices available for environmental applications, their implementation in real-world situations is limited. This study provides insights into existing issues that can be used as references and a comparative analysis for future studies and applications.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...