用于环境监测应用的便携式设备的最新进展。

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS
Biomicrofluidics Pub Date : 2024-09-04 eCollection Date: 2024-09-01 DOI:10.1063/5.0224217
Thi Ngoc Diep Trinh, Nguyen Khoi Song Tran, Hanh An Nguyen, Nguyen Minh Chon, Kieu The Loan Trinh, Nae Yoon Lee
{"title":"用于环境监测应用的便携式设备的最新进展。","authors":"Thi Ngoc Diep Trinh, Nguyen Khoi Song Tran, Hanh An Nguyen, Nguyen Minh Chon, Kieu The Loan Trinh, Nae Yoon Lee","doi":"10.1063/5.0224217","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental pollution remains a major societal problem, leading to serious impacts on living organisms including humans. Human activities such as civilization, urbanization, and industrialization are major causes of pollution. Imposing stricter rules helps control environmental pollutant levels, creating a need for reliable pollutant monitoring in air, water, and soil. The application of traditional analytical techniques is limited in low-resource areas because they are sophisticated, expensive, and bulky. With the development of biosensors and microfluidics technology, environmental monitoring has significantly improved the analysis time, low cost, portability, and ease of use. This review discusses the fundamentals of portable devices, including microfluidics and biosensors, for environmental control. Recently, publications reviewing microfluidics and biosensor device applications have increased more than tenfold, showing the potential of emerging novel approaches for environmental monitoring. Strategies for enzyme-, immunoassay-, and molecular-based analyte sensing are discussed based on their mechanisms and applications. Microfluidic and biosensor platforms for detecting major pollutants, including metal ions, pathogens, pesticides, and antibiotic residues, are reviewed based on their working principles, advantages, and disadvantages. Challenges and future trends for the device design and fabrication process to improve performance are discussed. Miniaturization, low cost, selectivity, sensitivity, high automation, and savings in samples and reagents make the devices ideal alternatives for in-field detection, especially in low-resource areas. However, their operation with complicated environmental samples requires further research to improve the specificity and sensitivity. Although there is a wide range of devices available for environmental applications, their implementation in real-world situations is limited. This study provides insights into existing issues that can be used as references and a comparative analysis for future studies and applications.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377084/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent advances in portable devices for environmental monitoring applications.\",\"authors\":\"Thi Ngoc Diep Trinh, Nguyen Khoi Song Tran, Hanh An Nguyen, Nguyen Minh Chon, Kieu The Loan Trinh, Nae Yoon Lee\",\"doi\":\"10.1063/5.0224217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental pollution remains a major societal problem, leading to serious impacts on living organisms including humans. Human activities such as civilization, urbanization, and industrialization are major causes of pollution. Imposing stricter rules helps control environmental pollutant levels, creating a need for reliable pollutant monitoring in air, water, and soil. The application of traditional analytical techniques is limited in low-resource areas because they are sophisticated, expensive, and bulky. With the development of biosensors and microfluidics technology, environmental monitoring has significantly improved the analysis time, low cost, portability, and ease of use. This review discusses the fundamentals of portable devices, including microfluidics and biosensors, for environmental control. Recently, publications reviewing microfluidics and biosensor device applications have increased more than tenfold, showing the potential of emerging novel approaches for environmental monitoring. Strategies for enzyme-, immunoassay-, and molecular-based analyte sensing are discussed based on their mechanisms and applications. Microfluidic and biosensor platforms for detecting major pollutants, including metal ions, pathogens, pesticides, and antibiotic residues, are reviewed based on their working principles, advantages, and disadvantages. Challenges and future trends for the device design and fabrication process to improve performance are discussed. Miniaturization, low cost, selectivity, sensitivity, high automation, and savings in samples and reagents make the devices ideal alternatives for in-field detection, especially in low-resource areas. However, their operation with complicated environmental samples requires further research to improve the specificity and sensitivity. Although there is a wide range of devices available for environmental applications, their implementation in real-world situations is limited. This study provides insights into existing issues that can be used as references and a comparative analysis for future studies and applications.</p>\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0224217\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0224217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

环境污染仍然是一个重大的社会问题,对包括人类在内的生物体造成严重影响。文明、城市化和工业化等人类活动是造成污染的主要原因。实施更严格的规定有助于控制环境污染物水平,因此需要对空气、水和土壤中的污染物进行可靠的监测。传统分析技术由于复杂、昂贵和笨重,在资源匮乏地区的应用受到限制。随着生物传感器和微流控技术的发展,环境监测在分析时间、低成本、便携性和易用性方面都有了显著改善。本综述讨论了用于环境控制的便携式设备(包括微流控技术和生物传感器)的基本原理。最近,有关微流控技术和生物传感器设备应用的出版物增加了十倍以上,显示了新出现的环境监测新方法的潜力。本文根据酶、免疫测定和分子分析传感的机理和应用,对这些传感策略进行了讨论。根据其工作原理、优点和缺点,综述了用于检测主要污染物(包括金属离子、病原体、杀虫剂和抗生素残留)的微流体和生物传感器平台。还讨论了提高性能的设备设计和制造工艺所面临的挑战和未来趋势。微型化、低成本、选择性强、灵敏度高、自动化程度高以及节省样品和试剂等特点使这些装置成为现场检测的理想替代品,尤其是在资源匮乏的地区。不过,要在复杂的环境样本中使用这些设备,还需要进一步研究,以提高其特异性和灵敏度。虽然环境应用的设备种类繁多,但在实际应用中的实施却很有限。本研究提供了对现有问题的见解,可作为未来研究和应用的参考和比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in portable devices for environmental monitoring applications.

Environmental pollution remains a major societal problem, leading to serious impacts on living organisms including humans. Human activities such as civilization, urbanization, and industrialization are major causes of pollution. Imposing stricter rules helps control environmental pollutant levels, creating a need for reliable pollutant monitoring in air, water, and soil. The application of traditional analytical techniques is limited in low-resource areas because they are sophisticated, expensive, and bulky. With the development of biosensors and microfluidics technology, environmental monitoring has significantly improved the analysis time, low cost, portability, and ease of use. This review discusses the fundamentals of portable devices, including microfluidics and biosensors, for environmental control. Recently, publications reviewing microfluidics and biosensor device applications have increased more than tenfold, showing the potential of emerging novel approaches for environmental monitoring. Strategies for enzyme-, immunoassay-, and molecular-based analyte sensing are discussed based on their mechanisms and applications. Microfluidic and biosensor platforms for detecting major pollutants, including metal ions, pathogens, pesticides, and antibiotic residues, are reviewed based on their working principles, advantages, and disadvantages. Challenges and future trends for the device design and fabrication process to improve performance are discussed. Miniaturization, low cost, selectivity, sensitivity, high automation, and savings in samples and reagents make the devices ideal alternatives for in-field detection, especially in low-resource areas. However, their operation with complicated environmental samples requires further research to improve the specificity and sensitivity. Although there is a wide range of devices available for environmental applications, their implementation in real-world situations is limited. This study provides insights into existing issues that can be used as references and a comparative analysis for future studies and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信