{"title":"The AICD interactome: implications in neurodevelopment and neurodegeneration.","authors":"Laura Lok-Haang Ng, Jessica Chow, Kwok-Fai Lau","doi":"10.1042/BST20241510","DOIUrl":"10.1042/BST20241510","url":null,"abstract":"<p><p>The pathophysiological mechanism involving the proteolytic processing of amyloid precursor protein (APP) and the generation of amyloid plaques is of significant interest in research on Alzheimer's disease (AD). The increasing significance of the downstream AD-related pathophysiological mechanisms has sparked research interest in other products of the APP processing cascades, including the APP intracellular domain (AICD). The potential importance of AICD in various cellular processes in the central nervous system has been established through the identification of its interactors. The interaction between AICD and its physiological binding partners is implicated in cellular events including regulation of transcriptional activity, cytoskeletal dynamics, neuronal growth, APP processing and cellular apoptosis. On the contrary, AICD is also implicated in neurodegeneration, which is a potential outcome of the functional fluctuation of AICD-mediated neuronal processes within the neuronal network. In this review, we summarize the neuronal functions and pathological manifestations of the dynamic AICD interaction network.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2539-2556"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular regulators of chemotaxis in human hematopoietic stem cells.","authors":"Yining Liu, Nanxi Geng, Xinxin Huang","doi":"10.1042/BST20240288","DOIUrl":"10.1042/BST20240288","url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs), essential for lifelong blood cell regeneration, are clinically utilized to treat various hematological disorders. These cells originate in the aorta-gonad-mesonephros region, expand in the fetal liver, and mature in the bone marrow. Chemotaxis, involving gradient sensing, polarization, and migration, directs HSCs and is crucial for their homing and mobilization. The molecular regulation of HSC chemotaxis involves chemokines, chemokine receptors, signaling pathways, and cytoskeletal proteins. Recent advances in understanding these regulatory mechanisms have deepened insights into HSC development and hematopoiesis, offering new avenues for therapeutic innovations. Strategies including glucocorticoid receptor activation, modulation of histone acetylation, stimulation of nitric oxide signaling, and interference with m6A RNA modification have shown potential in enhancing CXCR4 expression, thereby improving the chemotactic response and homing capabilities of human HSCs. This review synthesizes current knowledge on the molecular regulation of human HSC chemotaxis and its implications for health and disease.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2427-2437"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole A Bell, Xiaohuan Chen, David R Giovannucci, Arun Anantharam
{"title":"Cellular mechanisms underlying pituitary adenylate cyclase activating polypeptide-stimulated secretion in the adrenal medulla.","authors":"Nicole A Bell, Xiaohuan Chen, David R Giovannucci, Arun Anantharam","doi":"10.1042/BST20231326","DOIUrl":"10.1042/BST20231326","url":null,"abstract":"<p><p>The adrenal medulla is a key effector of the sympathetic nervous system in the periphery. Its primary function is to translate variations in sympathetic activity into hormone outputs that modify end organ function throughout the body. These hormones include epinephrine, norepinephrine, and a variety of vasoactive peptides. Hormone secretion occurs when neurotransmitters, delivered by sympathetic nerves, bind to, and activate receptors on adrenomedullary chromaffin cells. In this context, two neurotransmitters of particular importance are acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). PACAP, discovered initially as a secretagogue in the hypothalamus, is now appreciated to provoke a strong secretory response from chromaffin cells in vitro and in situ. However, the cellular mechanisms underlying PACAP-stimulated secretion are still poorly understood. In the sections below, we will summarize what is known about the actions of PACAP in the adrenal medulla, discuss recent advances that pertain to the PACAP signaling pathway, and highlight areas for future investigation.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2373-2383"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in the molecular understanding of GPCR-arrestin complexes.","authors":"Ivana Petrovic, Stephan Grzesiek, Polina Isaikina","doi":"10.1042/BST20240170","DOIUrl":"10.1042/BST20240170","url":null,"abstract":"<p><p>Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2333-2342"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giada Vanacore, Jens Bager Christensen, N Sumru Bayin
{"title":"Age-dependent regenerative mechanisms in the brain.","authors":"Giada Vanacore, Jens Bager Christensen, N Sumru Bayin","doi":"10.1042/BST20230547","DOIUrl":"10.1042/BST20230547","url":null,"abstract":"<p><p>Repairing the adult mammalian brain represents one of the greatest clinical challenges in medicine. Injury to the adult brain often results in substantial loss of neural tissue and permanent functional impairment. In contrast with the adult, during development, the mammalian brain exhibits a remarkable capacity to replace lost cells. A plethora of cell-intrinsic and extrinsic factors regulate the age-dependent loss of regenerative potential in the brain. As the developmental window closes, neural stem cells undergo epigenetic changes, limiting their proliferation and differentiation capacities, whereas, changes in the brain microenvironment pose additional challenges opposing regeneration, including inflammation and gliosis. Therefore, studying the regenerative mechanisms during development and identifying what impairs them with age may provide key insights into how to stimulate regeneration in the brain. Here, we will discuss how the mammalian brain engages regenerative mechanisms upon injury or neuron loss. Moreover, we will describe the age-dependent changes that affect these processes. We will conclude by discussing potential therapeutic approaches to overcome the age-dependent regenerative decline and stimulate regeneration.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2243-2252"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of protein O-GlcNAcylation in diabetic cardiomyopathy.","authors":"John C Chatham, Adam R Wende","doi":"10.1042/BST20240262","DOIUrl":"10.1042/BST20240262","url":null,"abstract":"<p><p>It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2343-2358"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tools and techniques for quantitative glycoproteomic analysis.","authors":"Siyuan Kong, Wei Zhang, Weiqian Cao","doi":"10.1042/BST20240257","DOIUrl":"10.1042/BST20240257","url":null,"abstract":"<p><p>Recent advances in mass spectrometry (MS)-based methods have significantly expanded the capabilities for quantitative glycoproteomics, enabling highly sensitive and accurate quantitation of glycosylation at intact glycopeptide level. These developments have provided valuable insights into the roles of glycoproteins in various biological processes and diseases. In this short review, we summarize pertinent studies on quantitative techniques and tools for site-specific glycoproteomic analysis published over the past decade. We also highlight state-of-the-art MS-based software that facilitate multi-dimension quantification of the glycoproteome, targeted quantification of specific glycopeptides, and the analysis of glycopeptide isomers. Additionally, we discuss the potential applications of these technologies in clinical biomarker discovery and the functional characterization of glycoproteins in health and disease. The review concludes with a discussion of current challenges and future perspectives in the field, emphasizing the need for more precise, high-throughput and efficient methods to further advance quantitative glycoproteomics and its applications.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2439-2453"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linking glycosphingolipid metabolism to disease-related changes in the plasma membrane proteome.","authors":"Holly Monkhouse, Janet E Deane","doi":"10.1042/BST20240315","DOIUrl":"10.1042/BST20240315","url":null,"abstract":"<p><p>Glycosphingolipids (GSLs) are vital components of the plasma membrane (PM), where they play crucial roles in cell function. GSLs form specialised membrane microdomains that organise lipids and proteins into functional platforms for cell adhesion and signalling. GSLs can also influence the function of membrane proteins and receptors, via direct protein-lipid interactions thereby affecting cell differentiation, proliferation, and apoptosis. Research into GSL-related diseases has primarily focussed on lysosomal storage disorders, where defective enzymes lead to the accumulation of GSLs within lysosomes, causing cellular dysfunction and disease. However, recent studies are uncovering the broader cellular impact of GSL imbalances including on a range of organelles and cellular compartments such as the mitochondria, endoplasmic reticulum and PM. In this review we describe the mechanisms by which GSL imbalances can influence the PM protein composition and explore examples of the changes that have been observed in the PM proteome upon GSL metabolic disruption. Identifying and understanding these changes to the PM protein composition will enable a more complete understanding of lysosomal storage diseases and provide new insights into the pathogenesis of other GSL-related diseases, including cancer and neurodegenerative disorders.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2477-2486"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adding a twist to the loops: the role of DNA superhelicity in the organization of chromosomes by SMC protein complexes.","authors":"Antonio Valdés, Christian H Haering","doi":"10.1042/BST20240650","DOIUrl":"10.1042/BST20240650","url":null,"abstract":"<p><p>Structural maintenance of chromosomes (SMC) protein complexes, including cohesin, condensin, and the Smc5/6 complex, are integral to various processes in chromosome biology. Despite their distinct roles, these complexes share two key properties: the ability to extrude DNA into large loop structures and the capacity to alter the superhelicity of the DNA double helix. In this review, we explore the influence of eukaryotic SMC complexes on DNA topology, debate its potential physiological function, and discuss new structural insights that may explain how these complexes mediate changes in DNA topology.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"52 6","pages":"2487-2497"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into mechanisms of ubiquitin ADP-ribosylation reversal.","authors":"Zhengrui Zhang, Chittaranjan Das","doi":"10.1042/BST20240896","DOIUrl":"10.1042/BST20240896","url":null,"abstract":"<p><p>Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation. Among the various regulatory effectors, the macrodomain effector MavL has been recently shown to reverse the Ub ADP-ribosylation and regenerate intact Ub. Here, we briefly outline emerging knowledge on ubiquitination and ADP-ribosylation and tap into cases of direct cross-talk between these two PTMs. The chemistry of ADP-ribose in the context of the PTM and the reversal mechanisms of ADP-ribosylation are then highlighted. Lastly, focusing on recent structural studies on the MavL-mediated reversal of Ub ADP-ribosylation, we strive to deduce distinct mechanisms regarding the catalysis and product release of this reaction.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2525-2537"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}