IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shu Li, Genki Terashi, Zicong Zhang, Daisuke Kihara
{"title":"Advancing structure modeling from cryo-EM maps with deep learning.","authors":"Shu Li, Genki Terashi, Zicong Zhang, Daisuke Kihara","doi":"10.1042/BST20240784","DOIUrl":null,"url":null,"abstract":"<p><p>Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by enabling the determination of biomolecular structures that are challenging to resolve using conventional methods. Interpreting a cryo-EM map requires accurate modeling of the structures of underlying biomolecules. Here, we concisely discuss the evolution and current state of automatic structure modeling from cryo-EM density maps. We classify modeling methods into two categories: de novo modeling methods from high-resolution maps (better than 5 Å) and methods that model by fitting individual structures of component proteins to maps at lower resolution (worse than 5 Å). Special attention is given to the role of deep learning in the modeling process, highlighting how AI-driven approaches are transformative in cryo-EM structure modeling. We conclude by discussing future directions in the field.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"53 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20240784","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

低温电子显微镜(cryo-EM)能够确定传统方法难以解决的生物分子结构,从而给结构生物学带来了革命性的变化。解读冷冻电子显微镜图需要对底层生物分子结构进行精确建模。在此,我们将简要讨论根据低温电子显微镜密度图自动建立结构模型的发展和现状。我们将建模方法分为两类:从高分辨率图谱(优于 5 Å)全新建模的方法,以及通过拟合低分辨率图谱(劣于 5 Å)的单个组成蛋白结构来建模的方法。我们特别关注了深度学习在建模过程中的作用,强调了人工智能驱动的方法在低温电子显微镜结构建模中的变革作用。最后,我们讨论了该领域的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing structure modeling from cryo-EM maps with deep learning.

Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by enabling the determination of biomolecular structures that are challenging to resolve using conventional methods. Interpreting a cryo-EM map requires accurate modeling of the structures of underlying biomolecules. Here, we concisely discuss the evolution and current state of automatic structure modeling from cryo-EM density maps. We classify modeling methods into two categories: de novo modeling methods from high-resolution maps (better than 5 Å) and methods that model by fitting individual structures of component proteins to maps at lower resolution (worse than 5 Å). Special attention is given to the role of deep learning in the modeling process, highlighting how AI-driven approaches are transformative in cryo-EM structure modeling. We conclude by discussing future directions in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信