Behavioural PharmacologyPub Date : 2024-08-01Epub Date: 2024-06-07DOI: 10.1097/FBP.0000000000000783
Rebecca M Craft
{"title":"Pain-suppressed consumption of highly palatable liquid in rats.","authors":"Rebecca M Craft","doi":"10.1097/FBP.0000000000000783","DOIUrl":"10.1097/FBP.0000000000000783","url":null,"abstract":"<p><p>This study determined whether consumption of a highly palatable liquid is a reliable measure of inflammatory pain and antinociception in male and female rats. After a 10-day acquisition period, the impact of intraplantar oil vs. complete Freund adjuvant (CFA) on consumption of vanilla-flavored Ensure was assessed, with a sipper tube height 12 or 19 cm above the floor. CFA significantly decreased Ensure consumption, which completely recovered within 4-7 days to levels in oil-treated controls; neither sex nor sipper tube height significantly influenced Ensure consumption. CFA also significantly suppressed Ensure consumption in rats not exposed to the 10-day acquisition period, but only in males. To test the predictive validity of Ensure consumption as a measure of pain, separate rats were pretreated with a vehicle, an opioid, a nonsteroidal anti-inflammatory drug, or a cannabinoid the day after CFA treatment. Morphine and ibuprofen significantly attenuated CFA-suppressed drinking in at least one sex, and tetrahydrocannabinol did not. Neither ibuprofen nor tetrahydrocannabinol significantly altered drinking in oil-injected, 'pain-free' controls, but morphine increased drinking. These results demonstrate that CFA decreases consumption of a highly palatable liquid regardless of previous exposure (training) to the consumption procedure, but only in males. Although standard analgesics attenuate CFA-suppressed drinking, nonspecific hyperphagic effects can confound the interpretation of results. Thus, consumption of a highly palatable liquid is not an optimal measure for candidate analgesic screening.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":"263-268"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behavioural PharmacologyPub Date : 2024-08-01Epub Date: 2024-06-07DOI: 10.1097/FBP.0000000000000779
Çinar Furkan İlhan, Esra Ülke, Gonzalo P Urcelay, Sezen Kişlal
{"title":"Propranolol attenuates the establishment of conditioned context aversions: differential effects compared to MK-801 in an animal model of anticipatory nausea and vomiting.","authors":"Çinar Furkan İlhan, Esra Ülke, Gonzalo P Urcelay, Sezen Kişlal","doi":"10.1097/FBP.0000000000000779","DOIUrl":"10.1097/FBP.0000000000000779","url":null,"abstract":"<p><p>Cancer patients often experience anticipatory nausea and vomiting (ANV) due to Pavlovian conditioning. Both N-methyl-D-aspartate and beta-adrenergic receptors are known to mediate memory formation, but their role in the development of ANV remains unclear. This study used a conditioned context aversion (CCA) paradigm, an animal model for ANV, to assess whether administration of the beta-adrenergic receptor antagonist propranolol or the N-methyl-D-aspartate receptor antagonist MK-801 immediately after CCA training has an effect on the later expression of CCA in CD1 male mice. In experiment 1, three groups were injected with lithium chloride (LiCl) to induce aversion in a novel context, resulting in CCA. A control group was injected with sodium chloride (NaCl). Following conditioning, two of the LiCl-treated groups received different doses of MK-801 (0.05 or 0.2 mg/kg), while the remaining LiCl-treated and NaCl-treated groups received a second NaCl injection. In experiment 2, two groups were injected with LiCl, and one group was injected with NaCl. After conditioning, one of the LiCl-treated groups received a propranolol injection (10 mg/kg). The remaining LiCl-treated and NaCl-treated groups received NaCl injections. Water consumption was measured in all groups 72 h later within the conditioning context. Postconditioning administration of propranolol, but not MK-801, attenuated CCA, as revealed by similar levels of water consumption in animals that received LiCl and propranolol relative to NaCl-treated animals. These findings suggest that beta-adrenergic receptor activation is crucial for the development of CCA. Therefore, propranolol may represent a novel therapeutic approach for cancer patients at high risk of ANV.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":"293-302"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behavioural PharmacologyPub Date : 2024-08-01Epub Date: 2024-06-03DOI: 10.1097/FBP.0000000000000780
Suzannah S De Almeida, Caryssa R Drinkuth, Gregory C Sartor
{"title":"Comparing withdrawal- and anxiety-like behaviors following oral and subcutaneous oxycodone administration in C57BL/6 mice.","authors":"Suzannah S De Almeida, Caryssa R Drinkuth, Gregory C Sartor","doi":"10.1097/FBP.0000000000000780","DOIUrl":"10.1097/FBP.0000000000000780","url":null,"abstract":"<p><p>Excessive prescribing and misuse of prescription opioids, such as oxycodone, significantly contributed to the current opioid crisis. Although oxycodone is typically consumed orally by humans, parenteral routes of administration have primarily been used in preclinical models of oxycodone dependence. To address this issue, more recent studies have used oral self-administration procedures to study oxycodone seeking and withdrawal in rodents. Behavioral differences, however, following oral oxycodone intake versus parenteral oxycodone administration remain unclear. Thus, the goal of the current studies was to compare anxiety- and withdrawal-like behaviors using established opioid dependence models of either home cage oral intake of oxycodone (0.5 mg/ml) or repeated subcutaneous (s.c.) injections of oxycodone (10 mg/kg) in male and female mice. Here, mice received 10 days of oral or s.c. oxycodone administration, and following 72 h of forced abstinence, anxiety- and withdrawal-like behaviors were measured using elevated zero maze, open field, and naloxone-induced precipitated withdrawal procedures. Global withdrawal scores were increased to a similar degree following oral and s.c. oxycodone use, while both routes of oxycodone administration had minimal effects on anxiety-like behaviors. When examining individual withdrawal-like behaviors, mice receiving s.c. oxycodone exhibited more paw tremors and jumps during naloxone-induced precipitated withdrawal compared with oral oxycodone mice. These results indicate that both models of oxycodone administration are sufficient to elevate global withdrawal scores, but, when compared with oral consumption, s.c. oxycodone injections yielded more pronounced effects on some withdrawal-like behaviors.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":"269-279"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behavioural PharmacologyPub Date : 2024-08-01Epub Date: 2024-06-17DOI: 10.1097/FBP.0000000000000778
Shaimaa A Elshebiney, Rania A Elgohary, Marwa E El-Shamarka, Mostafa Mabrouk, Hanan H Beheri
{"title":"A novel tramadol-polycaprolactone implant could palliate heroin conditioned place preference and withdrawal in rats: behavioral and neurochemical study.","authors":"Shaimaa A Elshebiney, Rania A Elgohary, Marwa E El-Shamarka, Mostafa Mabrouk, Hanan H Beheri","doi":"10.1097/FBP.0000000000000778","DOIUrl":"10.1097/FBP.0000000000000778","url":null,"abstract":"<p><p>Drug dependence is a chronic brain disease characterized by craving and recurrent episodes of relapse. Tramadol HCl is a promising agent for withdrawal symptoms management, considering its relatively low abuse potential and safety. Oral administration, however, is not preferred in abstinence maintenance programs. Introducing an implantable, long-lasting formula is suggested to help outpatient abstinence programs achieve higher rates of treatment continuation. Tramadol implants (T350 and T650) were prepared on polycaprolactone polymer ribbons by the wet method. Male Wistar rats were adapted to heroin-conditioned place preference (CPP) at escalating doses (3-30 mg/kg, intraperitoneally, for 14 days). Implants were surgically implanted in the back skin of rats. After 14 days, the CPP score was recorded. Naloxone (1 mg/kg, intraperitoneally) was used to induce withdrawal on day 15, and symptoms were scored. Elevated plus maze and open field tests were performed for anxiety-related symptoms. Striata were analyzed for neurochemical changes reflected in dopamine, 3,4-dihydroxyphenyl acetic acid, gamma-aminobutyric acid, and serotonin levels. Brain oxidative changes including glutathione and lipid peroxides were assessed. The tramadol implants (T350 and T650) reduced heroin CPP and limited naloxone-induced withdrawal symptoms. The striata showed increased levels of 3,4-dihydroxyphenyl acetic acid, and serotonin and decreased levels of gamma-aminobutyric acid and dopamine after heroin withdrawal induction, which were reversed after implanting T350 and T650. Implants restore the brain oxidative state. Nonsignificant low naloxone-induced withdrawal score after the implant was used in naive subjects indicating low abuse potential of the implants. The presented tramadol implants were effective at diminishing heroin CPP and withdrawal in rats, suggesting further investigations for application in the management of opioid withdrawal.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":"280-292"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behavioural PharmacologyPub Date : 2024-08-01Epub Date: 2024-06-11DOI: 10.1097/FBP.0000000000000782
Homayoon Golmohammadi, Diba Shirmohammadi, Sajad Mazaheri, Abbas Haghparast
{"title":"D2-like dopamine receptors blockade within the dentate gyrus shows a greater effect on stress-induced analgesia in the tail-flick test compared to D1-like dopamine receptors.","authors":"Homayoon Golmohammadi, Diba Shirmohammadi, Sajad Mazaheri, Abbas Haghparast","doi":"10.1097/FBP.0000000000000782","DOIUrl":"10.1097/FBP.0000000000000782","url":null,"abstract":"<p><strong>Introduction: </strong>Acute stress, as a protective mechanism to respond to an aversive stimulus, can often be accompanied by suppressing pain perception via promoting consistent burst firing of dopamine neurons. Besides, sensitive and advanced research techniques led to the recognition of the mesohippocampal dopaminergic terminals, particularly in the hippocampal dentate gyrus (DG). Moreover, previous studies have shown that dopamine receptors within the hippocampal DG play a critical role in induced antinociceptive responses by forced swim stress (FSS) in the presence of inflammatory pain. Since different pain states can trigger various mechanisms and transmitter systems, the present experiments aimed to investigate whether dopaminergic receptors within the DG have the same role in the presence of acute thermal pain.</p><p><strong>Methods: </strong>Ninety-seven adult male albino Wistar rats underwent stereotaxic surgery, and a stainless steel guide cannula was unilaterally implanted 1 mm above the DG. Different doses of SCH23390 or sulpiride as D1- and D2-like dopamine receptor antagonists were microinjected into the DG 5-10 min before exposure to FSS, and 5 min after FSS exposure, the tail-flick test evaluated the effect of stress on the nociceptive response at the time-set intervals.</p><p><strong>Results: </strong>The results demonstrated that exposure to FSS could significantly increase the acute pain perception threshold, while intra-DG administration of SCH23390 and sulpiride reduced the antinociceptive effect of FSS in the tail-flick test.</p><p><strong>Discussion: </strong>Additionally, it seems the D2-like dopamine receptor within the DG plays a more prominent role in FSS-induced analgesia in the acute pain model.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":"253-262"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iardja S L Sales, Alana G de Souza, Adriano J M Chaves Filho, Tiago L Sampaio, Daniel M A da Silva, José T Valentim, Raquell de C Chaves, Michelle V R Soares, Dilailson C Costa Júnior, José M Barbosa Filho, Danielle S Macêdo, Francisca Cléa Florenço de Sousa
{"title":"Antidepressant-like effect of riparin I and riparin II against CUMS-induced neuroinflammation via astrocytes and microglia modulation in mice.","authors":"Iardja S L Sales, Alana G de Souza, Adriano J M Chaves Filho, Tiago L Sampaio, Daniel M A da Silva, José T Valentim, Raquell de C Chaves, Michelle V R Soares, Dilailson C Costa Júnior, José M Barbosa Filho, Danielle S Macêdo, Francisca Cléa Florenço de Sousa","doi":"10.1097/FBP.0000000000000788","DOIUrl":"10.1097/FBP.0000000000000788","url":null,"abstract":"<p><p>Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15th to the 22nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1β) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1β levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behavioural PharmacologyPub Date : 2024-06-01Epub Date: 2024-03-29DOI: 10.1097/FBP.0000000000000765
Woojin Kang, Imane Frouni, Cynthia Kwan, Louis Desbiens, Adjia Hamadjida, Philippe Huot
{"title":"Activation of mGlu 2/3 receptors with the orthosteric agonist LY-404,039 alleviates dyskinesia in experimental parkinsonism.","authors":"Woojin Kang, Imane Frouni, Cynthia Kwan, Louis Desbiens, Adjia Hamadjida, Philippe Huot","doi":"10.1097/FBP.0000000000000765","DOIUrl":"10.1097/FBP.0000000000000765","url":null,"abstract":"<p><p>LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":"185-192"},"PeriodicalIF":1.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behavioural PharmacologyPub Date : 2024-06-01Epub Date: 2024-03-29DOI: 10.1097/FBP.0000000000000757
Mohammad Houshyar, Hanie Karimi, Zahra Ghofrani-Jahromi, Sarah Nouri, Salar Vaseghi
{"title":"Crocin (bioactive compound of Crocus sativus L.) potently restores REM sleep deprivation-induced manic- and obsessive-compulsive-like behaviors in female rats.","authors":"Mohammad Houshyar, Hanie Karimi, Zahra Ghofrani-Jahromi, Sarah Nouri, Salar Vaseghi","doi":"10.1097/FBP.0000000000000757","DOIUrl":"10.1097/FBP.0000000000000757","url":null,"abstract":"<p><p>Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors including hyperlocomotion. On the other hand, crocin (one of the main compounds of Crocus sativus L. or Saffron) may be beneficial in the improvement of mental and cognitive dysfunctions. Also, crocin can restore the deleterious effects of SD on mental and cognitive processes. In this study, we investigated the effect of REM SD on female rats' behaviors including depression- and anxiety-like behaviors, locomotion, pain perception, and obsessive-compulsive-like behavior, and also, the potential effect of crocin on REM SD effects. We used female rats because evidence on the role of REM SD in modulating psychological and behavioral functions of female (but not male) rats is limited. REM SD was induced for 14 days (6h/day), and crocin (25, 50, and 75 mg/kg) was injected intraperitoneally. Open field test, forced swim test, hot plate test, and marble burying test were used to assess rats' behaviors. The results showed REM SD-induced manic-like behavior (hyperlocomotion). Also, REM SD rats showed decreased anxiety- and depression-like behavior, pain subthreshold (the duration it takes for the rat to feel pain), and showed obsessive compulsive-like behavior. However, crocin at all doses partially or fully reversed REM SD-induced behavioral changes. In conclusion, our results suggested the possible comorbidity of OCD and REM SD-induced manic-like behavior in female rats or the potential role of REM SD in the etiology of OCD, although more studies are needed. In contrast, crocin can be a possible therapeutic choice for decreasing manic-like behaviors.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":"35 4","pages":"239-252"},"PeriodicalIF":1.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SKF82958, a dopamine D1 receptor agonist, disrupts prepulse inhibition in the medial prefrontal cortex and nucleus accumbens in C57BL/6J mice.","authors":"Chengmei Yang, Xiaoyu Chen, Jingyang Xu, Weihai Chen","doi":"10.1097/FBP.0000000000000768","DOIUrl":"10.1097/FBP.0000000000000768","url":null,"abstract":"<p><p>Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":"35 4","pages":"193-200"},"PeriodicalIF":1.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discriminative stimulus properties of Cannabis sativa terpenes in rats.","authors":"Lawrence M Carey, Saba Ghodrati, Charles P France","doi":"10.1097/FBP.0000000000000772","DOIUrl":"https://doi.org/10.1097/FBP.0000000000000772","url":null,"abstract":"Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ9-tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":"47 28","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}