Daaniyal D Munir, Ritu A Shetty, Michael B Gatch, Nathalie Sumien, Rebecca D Hill, Jeanne A Priddy, Michael J Forster
{"title":"Locomotor and discriminative stimulus effects of NBOH hallucinogens in rodents.","authors":"Daaniyal D Munir, Ritu A Shetty, Michael B Gatch, Nathalie Sumien, Rebecca D Hill, Jeanne A Priddy, Michael J Forster","doi":"10.1097/FBP.0000000000000802","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the efforts of the Drug Enforcement Administration to safeguard the public from hazardous analogs of synthetic hallucinogens, these compounds have increasingly been observed in the illicit drug market. Four novel compounds were found to be similar in structure to the previously described 25X-NBOMe synthetic hallucinogens. These four compounds, 25B-NBOH, 25C-NBOH, 25E-NBOH, and 25I-NBOH were evaluated for their ability to modify spontaneous locomotor activity in mice to obtain dose range and time-course information and were then tested for discriminative stimulus effects similar to the prototypical hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM). All four test compounds decreased locomotor activity. The locomotor depressant effects were similar in magnitude and potency to DOM, but less potent than the 25X-NBOMe compounds in previous reports. 25B-NBOH, 25C-NBOH, and 25E-NBOH fully substituted (≥80%) in DOM-trained rats, whereas 25I-NBOH failed to fully substitute for DOM even at doses that suppressed responding. The discriminative stimulus effects were more potent than those of DOM and the 25X-NBOMe compounds. These findings suggest that three of the four test compounds are most likely to be used as recreational hallucinogens in a similar manner to DOM and the 25X-NBOMe compounds, whereas 25I-NBOH may be less liable to illicit use.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000802","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the efforts of the Drug Enforcement Administration to safeguard the public from hazardous analogs of synthetic hallucinogens, these compounds have increasingly been observed in the illicit drug market. Four novel compounds were found to be similar in structure to the previously described 25X-NBOMe synthetic hallucinogens. These four compounds, 25B-NBOH, 25C-NBOH, 25E-NBOH, and 25I-NBOH were evaluated for their ability to modify spontaneous locomotor activity in mice to obtain dose range and time-course information and were then tested for discriminative stimulus effects similar to the prototypical hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM). All four test compounds decreased locomotor activity. The locomotor depressant effects were similar in magnitude and potency to DOM, but less potent than the 25X-NBOMe compounds in previous reports. 25B-NBOH, 25C-NBOH, and 25E-NBOH fully substituted (≥80%) in DOM-trained rats, whereas 25I-NBOH failed to fully substitute for DOM even at doses that suppressed responding. The discriminative stimulus effects were more potent than those of DOM and the 25X-NBOMe compounds. These findings suggest that three of the four test compounds are most likely to be used as recreational hallucinogens in a similar manner to DOM and the 25X-NBOMe compounds, whereas 25I-NBOH may be less liable to illicit use.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.