Role of D1- and D2-like dopamine receptors within the CA1 hippocampal region in the stress-induced antinociceptive response in the exposure to acute pain.
Diba Shirmohammadi, Homayoon Golmohammadi, Fatemehsadat Seyedaghamiri, Abbas Haghparast
{"title":"Role of D1- and D2-like dopamine receptors within the CA1 hippocampal region in the stress-induced antinociceptive response in the exposure to acute pain.","authors":"Diba Shirmohammadi, Homayoon Golmohammadi, Fatemehsadat Seyedaghamiri, Abbas Haghparast","doi":"10.1097/FBP.0000000000000810","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to stressful conditions such as forced swim stress (FSS) induces antinociception. Previous reports determined that dopamine receptors in the CA1 hippocampal area are important in chronic pain processing. Considering that neural mechanisms behind acute and chronic pain differ significantly, in this study, we have investigated the role of dopamine receptors within the CA1 region in the FSS-induced antinociceptive response in the acute pain induced by the tail-flick test in the rat. The cannula was implanted unilaterally in the CA1 region of the animal brain. Animals received drugs or vehicles 5 min before FSS exposure. SCH23390 as the D1-like dopamine receptor (D1R) antagonist and Sulpiride as the D2-like dopamine receptor (D2R) antagonist were microinjected into the CA1 area at three doses (0.25, 1, and 4 μg/0.5 μl vehicle); the vehicle groups received saline instead of SCH23390 and dimethyl sulfoxide instead of Sulpiride. After exposure to FSS, the tail-flick test was done. The findings of this study revealed that FSS significantly attenuates nociceptive response during the tail-flick test ( P < 0.0001). Moreover, intra-CA1 microinjection of SCH23390 and Sulpiride significantly reduces the FSS-induced antinociception in the inducing acute pain ( P < 0.0001). The comparison of effective dose of 50% for D1R and D2R antagonists showed that both receptors in the CA1 almost equally reduce the FSS-induced antinociception in the tail-flick test. The result of this study supports the hypothesis, that the dopaminergic system in CA1 is involved in triggering a stress-induced antinociceptive response in acute pain conditions.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":"30-39"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000810","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to stressful conditions such as forced swim stress (FSS) induces antinociception. Previous reports determined that dopamine receptors in the CA1 hippocampal area are important in chronic pain processing. Considering that neural mechanisms behind acute and chronic pain differ significantly, in this study, we have investigated the role of dopamine receptors within the CA1 region in the FSS-induced antinociceptive response in the acute pain induced by the tail-flick test in the rat. The cannula was implanted unilaterally in the CA1 region of the animal brain. Animals received drugs or vehicles 5 min before FSS exposure. SCH23390 as the D1-like dopamine receptor (D1R) antagonist and Sulpiride as the D2-like dopamine receptor (D2R) antagonist were microinjected into the CA1 area at three doses (0.25, 1, and 4 μg/0.5 μl vehicle); the vehicle groups received saline instead of SCH23390 and dimethyl sulfoxide instead of Sulpiride. After exposure to FSS, the tail-flick test was done. The findings of this study revealed that FSS significantly attenuates nociceptive response during the tail-flick test ( P < 0.0001). Moreover, intra-CA1 microinjection of SCH23390 and Sulpiride significantly reduces the FSS-induced antinociception in the inducing acute pain ( P < 0.0001). The comparison of effective dose of 50% for D1R and D2R antagonists showed that both receptors in the CA1 almost equally reduce the FSS-induced antinociception in the tail-flick test. The result of this study supports the hypothesis, that the dopaminergic system in CA1 is involved in triggering a stress-induced antinociceptive response in acute pain conditions.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.