Biochemistry and Molecular Biology Education最新文献

筛选
英文 中文
An idea to explore: Student-centered scientific and medical writing project and workshop for undergraduate students 一个值得探讨的想法:以学生为中心的本科生科学和医学写作项目和讲习班。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-08-14 DOI: 10.1002/bmb.21853
Dionne R. van der Lugt, Talia Smits, Loubna El-Yamani, Thom van den Eng, Maroeska J. Burggraaf, Ivo R. Horn
{"title":"An idea to explore: Student-centered scientific and medical writing project and workshop for undergraduate students","authors":"Dionne R. van der Lugt,&nbsp;Talia Smits,&nbsp;Loubna El-Yamani,&nbsp;Thom van den Eng,&nbsp;Maroeska J. Burggraaf,&nbsp;Ivo R. Horn","doi":"10.1002/bmb.21853","DOIUrl":"10.1002/bmb.21853","url":null,"abstract":"<p>Writing is usually integrated in the curriculum of science studies. However, students often lack the skills to write for various audiences or, to produce a well written manuscript. We developed a concise project of 15 European Credits to improve the writing skills in an early phase of the bachelor study. Students worked on texts from various journals and looked at the writing styles. They rewrote texts in a popular and more scientific way and practiced with clear, vivid language, avoiding clutter and hedge words, considering a proper use of grammar and interpunction. Medical writing was also introduced during the project. Grading was based on rewriting for a non-expert and expert audience. A rewritten text was presented to the public in the form of a student-initiated survey. This project shows an inverted approach creating student ownership and enthusiasm for writing. In addition, we created and tested successfully a concise two-day workshop based on this project. Based on the results we herewith present the work as an idea to explore.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"711-717"},"PeriodicalIF":1.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21853","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“CARBGAME” (CARd & Board GAmes in Medical Education) as an innovative gamification tool for learning clinical enzymology in biochemistry for first year medical students "CARBGAME"(CARd & Board GAmes in Medical Education)是一种创新的游戏化工具,用于一年级医学生学习生物化学中的临床酶学。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-08-13 DOI: 10.1002/bmb.21857
Krishna Mohan Surapaneni
{"title":"“CARBGAME” (CARd & Board GAmes in Medical Education) as an innovative gamification tool for learning clinical enzymology in biochemistry for first year medical students","authors":"Krishna Mohan Surapaneni","doi":"10.1002/bmb.21857","DOIUrl":"10.1002/bmb.21857","url":null,"abstract":"<p>Gamification is emerging as an active learning innovation in medical education to enhance student engagement and promote life-long learning in a unique and collaborative environment. Clinical enzymology in biochemistry is one of the core topics in the medical curriculum. However, students face challenges in comprehension and retention of information. Hence, CARd &amp; Board GAmes in Medical Education (CARBGAME) was introduced and evaluated for its effectiveness in enhancing learning, application, and retention of knowledge in clinical enzymology via gamification context. This mixed-method study involved 150 first-year undergraduate medical students. Before the game, students completed a pre-test in clinical enzymology. Later they were divided into 25 small groups to compete in the board game designed for enzymology in biochemistry. The students took turns throwing the dice and answering the questions on the game board to continue moving forward. The first team to reach 100 and solve the case-based question was deemed the winner. Following the board game, the students took up the post-test to compare the educational impact of the innovation. Also, the subsequent internal assessment scores were compared with previous batch who were not implemented with this intervention. Then students evaluated the effectiveness of CARBGAME—Clinical Enzymology using a 32-item questionnaire on 5-point Likert scale. The feedback obtained on a 10-point rating scale and for qualitative analysis, students' and faculty perceptions were recorded in small groups. CARBGAME received overwhelmingly positive feedback from both students and faculty. It was perceived well by students for being fun, relevant, consistent, motivating, collaborative, and promoting experiential learning. The game's low-stakes approach, effective feedback, and sense of accomplishment were highly appreciated, making it a valuable tool for education. A significant improvement in knowledge was recorded, from a mean score of 8.37 ± 1.126 on a 20-point scoring scale before the game to 16.53 ± 1.219 after with a <i>p</i>-value of 0.0001. The comparison of the internal assessment scores between the intervention and non-intervention group of students also showed a significant improvement among those implemented with CARBGAME (<i>p</i> &lt; 0.0001). The CARBGAME innovation has achieved the intended outcome of promoting active learning and enhanced performance in clinical enzymology. Highly positive responses from faculty and students also indicate the exigent need to introduce innovative components like games into curricula to achieve student engagement and promote a meaningful learning experience.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"666-675"},"PeriodicalIF":1.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diving into research without wading through content: A skills-based cell biology course emphasizing the unknown 深入研究,无需涉猎内容:基于技能的细胞生物学课程强调未知性。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-08-09 DOI: 10.1002/bmb.21858
Gonzalo L. González-Del Pino, Megan E. Rokop
{"title":"Diving into research without wading through content: A skills-based cell biology course emphasizing the unknown","authors":"Gonzalo L. González-Del Pino,&nbsp;Megan E. Rokop","doi":"10.1002/bmb.21858","DOIUrl":"10.1002/bmb.21858","url":null,"abstract":"<p>In a typical undergraduate biology curriculum, students do not dive into research until they first wade through large amounts of content. Biology courses in the first few years of the college curriculum tend to be lecture-based and exam-based courses. As a result, science students are mainly exposed to content knowledge—not the skills scientists practice daily. While students may practice manual techniques in lab sections of lecture courses, the higher-level analytical research skills are reserved for the final semesters of college. To address this issue, we created an undergraduate cell biology course centered around practicing research skills, and fully accessible to students with no prerequisite content knowledge. In our course, students read primary literature (no textbooks) and were assessed by writing 12 analytical response papers and a full research proposal (no exams). Each student chose a topic for their semester-long project, conducted a literature review, and proposed future experiments—all in a stepwise fashion with plentiful feedback. The students' thorough comprehension of the primary literature, along with successful completion of the research proposals, shows that the course achieved its goals of building these skills—even in the nonbiology majors taking this pilot course. Pre- and post-survey results demonstrate that students gained feelings of confidence and preparedness for future research experiences. We envision a future model in which such a skills-based course replaces a more traditional cell biology course, giving students the opportunity to practice high-level analytical research skills from very early on in the undergraduate biology curriculum.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"676-688"},"PeriodicalIF":1.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21858","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An idea to explore: A systematic approach for solving plasmid double-digest puzzles. 一个值得探索的想法:解决质粒双酶切难题的系统方法
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-08-02 DOI: 10.1002/bmb.21855
Aurora Callahan, Todd Smith
{"title":"An idea to explore: A systematic approach for solving plasmid double-digest puzzles.","authors":"Aurora Callahan, Todd Smith","doi":"10.1002/bmb.21855","DOIUrl":"https://doi.org/10.1002/bmb.21855","url":null,"abstract":"<p><p>A common exercise given to students early in a molecular biology course is the creation of a restriction map of a plasmid \"digested\" by two restriction enzymes (RE). Meanwhile, students have learned from an early age about the properties and analyses of circles in their mathematics courses. But it is rare for students to learn using puzzle-based assignments at the intersection of molecular biology and mathematics. Therefore, we should present students with a puzzle that allows them to combine knowledge and skills from these seemingly disconnected disciplines. Here, we present a method for analyzing RE digests of circular plasmids using basic geometric principles.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective Caenorhabditis elegans CRISPR training module for high school and undergraduate summer research experiences in molecular biology 针对高中生和本科生分子生物学暑期研究经历的有效 CaenorhabditiselegansCRISPR 培训模块
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-07-27 DOI: 10.1002/bmb.21856
Carmen Herrera Sandoval, Christopher Borchers, Scott T Aoki
{"title":"An effective Caenorhabditis elegans CRISPR training module for high school and undergraduate summer research experiences in molecular biology","authors":"Carmen Herrera Sandoval,&nbsp;Christopher Borchers,&nbsp;Scott T Aoki","doi":"10.1002/bmb.21856","DOIUrl":"10.1002/bmb.21856","url":null,"abstract":"<p>Engaging in research experiences as a high school or undergraduate student interested in science, technology, engineering, and mathematics (STEM) is pivotal for their academic and professional development. A structured teaching framework can help cultivate a student's curiosity and passion for learning and research. In this study, an eight-week training program was created to encompass fundamental molecular biology principles and hands-on laboratory activities. This curriculum focuses on using clustered regularly interspaced short palindromic repeats (CRISPR) gene editing in the <i>Caenorhabditis elegans</i> model organism. Through pre- and post-program assessments, enhancements in students' molecular biology proficiency and enthusiasm for scientific exploration were observed. Overall, this training module demonstrated its accessibility and ability to engage inexperienced students in molecular biology and gene editing methodologies.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"656-665"},"PeriodicalIF":1.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21856","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A primer for junior trainees: Recognition of RNA modifications by RNA-binding proteins 初级学员入门指南:RNA 结合蛋白对 RNA 修饰的识别。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-07-22 DOI: 10.1002/bmb.21854
Murphy Angelo, Yash Bhargava, Scott Takeo Aoki
{"title":"A primer for junior trainees: Recognition of RNA modifications by RNA-binding proteins","authors":"Murphy Angelo,&nbsp;Yash Bhargava,&nbsp;Scott Takeo Aoki","doi":"10.1002/bmb.21854","DOIUrl":"10.1002/bmb.21854","url":null,"abstract":"<p>The complexity of RNA cannot be fully expressed with the canonical A, C, G, and U alphabet. To date, over 170 distinct chemical modifications to RNA have been discovered in living systems. RNA modifications can profoundly impact the cellular outcomes of messenger RNAs (mRNAs), transfer and ribosomal RNAs, and noncoding RNAs. Additionally, aberrant RNA modifications are associated with human disease. RNA modifications are a rising topic within the fields of biochemistry and molecular biology. The role of RNA modifications in gene regulation, disease pathogenesis, and therapeutic applications increasingly captures the attention of the scientific community. This review aims to provide undergraduates, junior trainees, and educators with an appreciation for the significance of RNA modifications in eukaryotic organisms, alongside the skills required to identify and analyze fundamental RNA–protein interactions. The pumilio RNA-binding protein and YT521-B homology (YTH) family of modified RNA-binding proteins serve as examples to highlight the fundamental biochemical interactions that underlie the specific recognition of both unmodified and modified ribonucleotides, respectively. By instilling these foundational, textbook concepts through practical examples, this review contributes an analytical toolkit that facilitates engagement with RNA modifications research at large.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"701-710"},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and identification of primary cells: A comprehensive primary cell culture experiment for graduate students 原代细胞的分离和鉴定:研究生原代细胞培养综合实验。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-07-17 DOI: 10.1002/bmb.21852
Jixiang Cao, Hao Chen, Qing Song, Hong Sun, Hua Yang, Yun Bai
{"title":"Isolation and identification of primary cells: A comprehensive primary cell culture experiment for graduate students","authors":"Jixiang Cao,&nbsp;Hao Chen,&nbsp;Qing Song,&nbsp;Hong Sun,&nbsp;Hua Yang,&nbsp;Yun Bai","doi":"10.1002/bmb.21852","DOIUrl":"10.1002/bmb.21852","url":null,"abstract":"<p>Experimental teaching is an important part of postgraduate training in basic and clinical medicine. While primary cell isolation and identification are among the most important research techniques for medical graduate students, most graduate students do not understand and master these techniques before starting their research experience. In particular, many students lack training in this field, and high-quality teaching and learning materials are still very sparse. Here, we designed a practical experiment course for graduate students engaged in research. The target students usually have research projects involving primary cell culture in their future research, making the course highly applicable for the students. The lab exercise focused on the methods of primary cell isolation (including mechanical grinding method, explant culture method and enzymatic digestion method) and identification (including flow cytometry, immunofluorescence, and periodic acid-Schiff (PAS) staining). It aimed to help students master the conceptual, principle, technical, operation, and analytical skills related to primary cell culture and contributed to their foundation for future research. Students generally reflect that they have initially mastered the isolation and identification of primary cell culture as a result of the course. Student feedback also indicates significantly increased confidence in the practical application of primary cell culture in the future. Here, we provide our experience for others who may want to implement similar courses.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"648-655"},"PeriodicalIF":1.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of an instructional team's feedback on an instructor's teaching practices in a Biology of Cancer course 在《癌症生物学》课程中,教学团队的反馈对教师教学实践的影响。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-07-17 DOI: 10.1002/bmb.21850
Patricia Moreira, Lisa Rezende, Ashton Goodell, Paul Blowers, Lisa Elfring, Vicente Talanquer
{"title":"Impact of an instructional team's feedback on an instructor's teaching practices in a Biology of Cancer course","authors":"Patricia Moreira,&nbsp;Lisa Rezende,&nbsp;Ashton Goodell,&nbsp;Paul Blowers,&nbsp;Lisa Elfring,&nbsp;Vicente Talanquer","doi":"10.1002/bmb.21850","DOIUrl":"10.1002/bmb.21850","url":null,"abstract":"<p>The effective implementation of evidence-based teaching (EBT) in large college courses benefits from the successful use of instructional teams. An instructional team's feedback allows instructors to act based on evidence of student learning, addressing students' needs. This feedback may be particularly important for novice instructors or experienced instructors teaching a class for the first time. This study sought to characterize the nature of an instructional team's feedback as well as its influence on the decisions and actions of a seasoned instructor teaching a new class. Instructional team members provided feedback in the form of anticipations, noticings, and suggestions. Anticipations and suggestions seemed to have the largest impact on the instructor's decisions and actions, while noticings, despite providing insights into student thinking, had a smaller effect. Our findings indicate that an instructional team can provide valuable feedback to instructors when team members have an opportunity to meaningfully participate in the planning and teaching processes.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"621-632"},"PeriodicalIF":1.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From primers to pipettes: An immersive course introducing high school students to qPCR for quantifying chemical defense gene expression 从引物到移液管:向高中生介绍量化化学防御基因表达的 qPCR 的沉浸式课程。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-07-16 DOI: 10.1002/bmb.21851
Zeke T. Spooner, Angela M. Encerrado-Manriquez, Tina T. Truong, Sascha C. T. Nicklisch
{"title":"From primers to pipettes: An immersive course introducing high school students to qPCR for quantifying chemical defense gene expression","authors":"Zeke T. Spooner,&nbsp;Angela M. Encerrado-Manriquez,&nbsp;Tina T. Truong,&nbsp;Sascha C. T. Nicklisch","doi":"10.1002/bmb.21851","DOIUrl":"10.1002/bmb.21851","url":null,"abstract":"<p>We created a 2-week, dual-module summer course introducing high school students to environmental toxicology by teaching them quantitative polymerase chain reaction (qPCR) as a way to quantify gene expression of chemical defense proteins in response to exposure to environmental pollutants. During the course, students are guided through the various stages of a successful qPCR experiment: in silico primer design and quality control, total RNA extraction and isolation, cDNA conversion, primer test PCR, and evaluation of results via agarose gel electrophoresis or UV/Vis spectra. The course combines lectures, discussions, and demonstrations with dry and wet laboratory sections to give students a thorough understanding of the scope, utility, and chemical principles of qPCR. At the end of the course, the students are taught how to analyze qPCR data and are encouraged to discuss their findings with other classmates to evaluate their hypotheses and assess possible sources of error. This course was designed to be easily adaptable to multiple test species, chemical exposures, and genes of interest. To explore both terrestrial and aquatic toxicology, the students use honey bees (<i>Apis mellifera</i>) and mosquitofish (<i>Gambusia affinis</i>) as test organisms, as well as ABC-type efflux transporters, antioxidant enzymes, and cytochrome P450 enzymes as endpoints for assessing gene expression. We share this course setup and applied protocols to encourage others to design and offer similar courses that give high school students a hands-on introduction to a broad swath of environmental toxicology research and an opportunity to develop scientific skills necessary for university-level research.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 6","pages":"633-647"},"PeriodicalIF":1.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming undergraduate education: Meeting report from the 2023 ASBMB summer education conference 改革本科教育:2023年ASBMB夏季教育大会的会议报告。
IF 1.2 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-07-14 DOI: 10.1002/bmb.21848
Pamela S. Mertz, Odutayo O. Odunuga, Celeste N. Peterson, Joseph J. Provost
{"title":"Transforming undergraduate education: Meeting report from the 2023 ASBMB summer education conference","authors":"Pamela S. Mertz,&nbsp;Odutayo O. Odunuga,&nbsp;Celeste N. Peterson,&nbsp;Joseph J. Provost","doi":"10.1002/bmb.21848","DOIUrl":"10.1002/bmb.21848","url":null,"abstract":"","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 5","pages":"486-491"},"PeriodicalIF":1.2,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信