{"title":"Integrating a Sugar Inhibition Experiment With a Cell Agglutination Experiment to Enhance Conceptual Understanding","authors":"Fang Ma, Ruilin Ma","doi":"10.1002/bmb.70007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study expanded the “cell agglutination reaction” experiment in undergraduate cell biology teaching by integrating a sugar inhibition component. Lectins bind to specific sugars. In the traditional cell agglutination reaction, lectin is used to cause cells to aggregate via binding to sugars present on the cell surface. Here, various small sugars were added to red blood cell agglutination reactions. If the lectin binds to the added sugar that inhibits cellular aggregation. The degree of cellular aggregation was measured for each added sugar and controls, and hence used to assess the binding of the lectin to each sugar type. The experiment allows students to observe cell adhesion under the influence of lectin, deepening their understanding of glycosyl groups, lectin binding to sugar sites, inhibition of lectin binding, and the glycosyl composition of cell surfaces. The experimental approach cultivates students' problem-solving skills and enhances teaching effectiveness. By incorporating current real-world issues, students' interest in independent learning is increased.</p>\n </div>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 5","pages":"536-545"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://iubmb.onlinelibrary.wiley.com/doi/10.1002/bmb.70007","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study expanded the “cell agglutination reaction” experiment in undergraduate cell biology teaching by integrating a sugar inhibition component. Lectins bind to specific sugars. In the traditional cell agglutination reaction, lectin is used to cause cells to aggregate via binding to sugars present on the cell surface. Here, various small sugars were added to red blood cell agglutination reactions. If the lectin binds to the added sugar that inhibits cellular aggregation. The degree of cellular aggregation was measured for each added sugar and controls, and hence used to assess the binding of the lectin to each sugar type. The experiment allows students to observe cell adhesion under the influence of lectin, deepening their understanding of glycosyl groups, lectin binding to sugar sites, inhibition of lectin binding, and the glycosyl composition of cell surfaces. The experimental approach cultivates students' problem-solving skills and enhances teaching effectiveness. By incorporating current real-world issues, students' interest in independent learning is increased.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.